BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 30317586)

  • 1. A pH-sensitive luminal His-cluster promotes interaction of PAM with V-ATPase along the secretory and endocytic pathways of peptidergic cells.
    Rao VK; Zavala G; Deb Roy A; Mains RE; Eipper BA
    J Cell Physiol; 2019 Jun; 234(6):8683-8697. PubMed ID: 30317586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A histidine-rich linker region in peptidylglycine α-amidating monooxygenase has the properties of a pH sensor.
    Vishwanatha K; Bäck N; Mains RE; Eipper BA
    J Biol Chem; 2014 May; 289(18):12404-20. PubMed ID: 24627494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking.
    Vishwanatha KS; Bäck N; Lam TT; Mains RE; Eipper BA
    J Biol Chem; 2016 Apr; 291(18):9835-50. PubMed ID: 26961877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme.
    Bonnemaison ML; Bäck N; Duffy ME; Ralle M; Mains RE; Eipper BA
    J Biol Chem; 2015 Aug; 290(35):21264-79. PubMed ID: 26170456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins.
    Bonnemaison M; Bäck N; Lin Y; Bonifacino JS; Mains R; Eipper B
    Traffic; 2014 Oct; 15(10):1099-121. PubMed ID: 25040637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trafficking of a secretory granule membrane protein is sensitive to copper.
    De M; Ciccotosto GD; Mains RE; Eipper BA
    J Biol Chem; 2007 Aug; 282(32):23362-71. PubMed ID: 17562710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminal and cytosolic pH feedback on proton pump activity and ATP affinity of V-type ATPase from Arabidopsis.
    Rienmüller F; Dreyer I; Schönknecht G; Schulz A; Schumacher K; Nagy R; Martinoia E; Marten I; Hedrich R
    J Biol Chem; 2012 Mar; 287(12):8986-93. PubMed ID: 22215665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel insights into V-ATPase functioning: distinct roles for its accessory subunits ATP6AP1/Ac45 and ATP6AP2/(pro) renin receptor.
    Jansen EJ; Martens GJ
    Curr Protein Pept Sci; 2012 Mar; 13(2):124-33. PubMed ID: 22044156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of an integral granule membrane protein to changes in pH.
    Bell-Parikh LC; Eipper BA; Mains RE
    J Biol Chem; 2001 Aug; 276(32):29854-63. PubMed ID: 11395514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuolar ATPase in phagosome-lysosome fusion.
    Kissing S; Hermsen C; Repnik U; Nesset CK; von Bargen K; Griffiths G; Ichihara A; Lee BS; Schwake M; De Brabander J; Haas A; Saftig P
    J Biol Chem; 2015 May; 290(22):14166-80. PubMed ID: 25903133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases.
    Song Q; Meng B; Xu H; Mao Z
    Transl Neurodegener; 2020 May; 9(1):17. PubMed ID: 32393395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands.
    Dames P; Zimmermann B; Schmidt R; Rein J; Voss M; Schewe B; Walz B; Baumann O
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3926-31. PubMed ID: 16537461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, function and regulation of the vacuolar (H+)-ATPases.
    Forgac M
    FEBS Lett; 1998 Dec; 440(3):258-63. PubMed ID: 9872382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling purinergic regulation in the epididymis: activation of V-ATPase-dependent acidification by luminal ATP and adenosine.
    Battistone MA; Merkulova M; Park YJ; Peralta MA; Gombar F; Brown D; Breton S
    J Physiol; 2019 Apr; 597(7):1957-1973. PubMed ID: 30746715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization.
    Lafourcade C; Sobo K; Kieffer-Jaquinod S; Garin J; van der Goot FG
    PLoS One; 2008 Jul; 3(7):e2758. PubMed ID: 18648502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect.
    Parra KJ; Kane PM
    Mol Cell Biol; 1998 Dec; 18(12):7064-74. PubMed ID: 9819393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The V-ATPase a2-subunit as a putative endosomal pH-sensor.
    Marshansky V
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1092-9. PubMed ID: 17956287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly.
    Stransky LA; Forgac M
    J Biol Chem; 2015 Nov; 290(45):27360-27369. PubMed ID: 26378229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole.
    Padilla-López S; Pearce DA
    J Biol Chem; 2006 Apr; 281(15):10273-80. PubMed ID: 16423829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Access of a membrane protein to secretory granules is facilitated by phosphorylation.
    Steveson TC; Zhao GC; Keutmann HT; Mains RE; Eipper BA
    J Biol Chem; 2001 Oct; 276(43):40326-37. PubMed ID: 11524414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.