BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 30318012)

  • 1. NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy.
    Mortezaee K; Goradel NH; Amini P; Shabeeb D; Musa AE; Najafi M; Farhood B
    Curr Mol Pharmacol; 2019; 12(1):50-60. PubMed ID: 30318012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics.
    Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Rezapoor S; Shabeeb D; Musa AE; Najafi M; Villa V
    Clin Transl Oncol; 2018 Aug; 20(8):975-988. PubMed ID: 29318449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of Inflammation for Radiation Protection and Mitigation.
    Yahyapour R; Amini P; Rezapoor S; Rezaeyan A; Farhood B; Cheki M; Fallah H; Najafi M
    Curr Mol Pharmacol; 2018; 11(3):203-210. PubMed ID: 29119941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Radiation Bystander and Non-Targeted Effects: Implications to Radiation Carcinogenesis and Radiotherapy.
    Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Najafi M; Villa V
    Curr Radiopharm; 2018; 11(1):34-45. PubMed ID: 29284398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation.
    Ameziane-El-Hassani R; Talbot M; de Souza Dos Santos MC; Al Ghuzlan A; Hartl D; Bidart JM; De Deken X; Miot F; Diallo I; de Vathaire F; Schlumberger M; Dupuy C
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5051-6. PubMed ID: 25848056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis.
    Rudolf J; Raad H; Taieb A; Rezvani HR
    Antioxid Redox Signal; 2018 May; 28(13):1238-1261. PubMed ID: 28990413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].
    Wideł M; Przybyszewski W; Rzeszowska-Wolny J
    Postepy Hig Med Dosw (Online); 2009 Aug; 63():377-88. PubMed ID: 19724078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer.
    Kushwaha PP; Gupta S; Singh AK; Prajapati KS; Shuaib M; Kumar S
    Antioxid Redox Signal; 2020 Feb; 32(5):267-284. PubMed ID: 31656079
    [No Abstract]   [Full Text] [Related]  

  • 9. Targeting of cellular redox metabolism for mitigation of radiation injury.
    Farhood B; Ashrafizadeh M; Khodamoradi E; Hoseini-Ghahfarokhi M; Afrashi S; Musa AE; Najafi M
    Life Sci; 2020 Jun; 250():117570. PubMed ID: 32205088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance.
    Nguyen GT; Green ER; Mecsas J
    Front Cell Infect Microbiol; 2017; 7():373. PubMed ID: 28890882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of carbon irradiation is associated with greater oxidative stress in mouse intestine and colon relative to γ-rays.
    Suman S; Kumar S; Fornace AJ; Datta K
    Free Radic Res; 2018 May; 52(5):556-567. PubMed ID: 29544379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low dose radiation upregulates Ras/p38 and NADPH oxidase in mouse colon two months after exposure.
    Kumar S; Suman S; Moon BH; Fornace AJ; Datta K
    Mol Biol Rep; 2023 Mar; 50(3):2067-2076. PubMed ID: 36542238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibiting the Activity of NADPH Oxidase in Cancer.
    Konaté MM; Antony S; Doroshow JH
    Antioxid Redox Signal; 2020 Aug; 33(6):435-454. PubMed ID: 32008376
    [No Abstract]   [Full Text] [Related]  

  • 14. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria.
    Szumiel I
    Int J Radiat Biol; 2015 Jan; 91(1):1-12. PubMed ID: 24937368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The NOX Family of Proteins Is Also Present in Bacteria.
    Hajjar C; Cherrier MV; Dias Mirandela G; Petit-Hartlein I; Stasia MJ; Fontecilla-Camps JC; Fieschi F; Dupuy J
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular insights of NADPH oxidases and its pathological consequences.
    Waghela BN; Vaidya FU; Agrawal Y; Santra MK; Mishra V; Pathak C
    Cell Biochem Funct; 2021 Mar; 39(2):218-234. PubMed ID: 32975319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress in thyroid carcinomas: biological and clinical significance.
    Ameziane El Hassani R; Buffet C; Leboulleux S; Dupuy C
    Endocr Relat Cancer; 2019 Mar; 26(3):R131-R143. PubMed ID: 30615595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidase 4 mediates ROS production in radiation-induced senescent cells and promotes migration of inflammatory cells.
    Sakai Y; Yamamori T; Yoshikawa Y; Bo T; Suzuki M; Yamamoto K; Ago T; Inanami O
    Free Radic Res; 2018 Jan; 52(1):92-102. PubMed ID: 29228832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toll-like receptor 4 signaling is associated with upregulated NADPH oxidase expression in peripheral T cells of children with autism.
    Nadeem A; Ahmad SF; Bakheet SA; Al-Harbi NO; Al-Ayadhi LY; Attia SM; Zoheir KMA
    Brain Behav Immun; 2017 Mar; 61():146-154. PubMed ID: 28034626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.