These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30318237)

  • 1. 3D printing using plant-derived cellulose and its derivatives: A review.
    Dai L; Cheng T; Duan C; Zhao W; Zhang W; Zou X; Aspler J; Ni Y
    Carbohydr Polym; 2019 Jan; 203():71-86. PubMed ID: 30318237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing.
    Yang J; An X; Liu L; Tang S; Cao H; Xu Q; Liu H
    Carbohydr Polym; 2020 Dec; 250():116881. PubMed ID: 33049824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering.
    Lin L; Jiang S; Yang J; Qiu J; Jiao X; Yue X; Ke X; Yang G; Zhang L
    Int J Bioprint; 2023; 9(1):637. PubMed ID: 36844245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current advances and future perspectives of 3D printing natural-derived biopolymers.
    Liu J; Sun L; Xu W; Wang Q; Yu S; Sun J
    Carbohydr Polym; 2019 Mar; 207():297-316. PubMed ID: 30600012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in lignin-based 3D printing materials: A mini-review.
    Wan Z; Zhang H; Niu M; Guo Y; Li H
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126660. PubMed ID: 37660847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing.
    Kucherov FA; Gordeev EG; Kashin AS; Ananikov VP
    Angew Chem Int Ed Engl; 2017 Dec; 56(50):15931-15935. PubMed ID: 28977731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.
    Fu K; Yao Y; Dai J; Hu L
    Adv Mater; 2017 Mar; 29(9):. PubMed ID: 27982475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in 3D printing of nanocellulose: structure, preparation, and application prospects.
    Ee LY; Yau Li SF
    Nanoscale Adv; 2021 Mar; 3(5):1167-1208. PubMed ID: 36132876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending Cellulose-Based Polymers Application in Additive Manufacturing Technology: A Review of Recent Approaches.
    Mohan D; Teong ZK; Bakir AN; Sajab MS; Kaco H
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Alternatives to Non-biodegradable Polymers in 3D Printing of Pharmaceuticals.
    Somwanshi A; Wadhwa P; Raza A; Hudda S; Magan M; Khera K
    Curr Pharm Des; 2023; 29(29):2281-2290. PubMed ID: 37818585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials.
    Dai L; Wang Y; Zou X; Chen Z; Liu H; Ni Y
    Small; 2020 Apr; 16(13):e1906567. PubMed ID: 32049432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-Based 3D Printing of Polymers of Intrinsic Microporosity.
    Zhang F; Ma Y; Liao J; Breedveld V; Lively RP
    Macromol Rapid Commun; 2018 Jul; 39(13):e1800274. PubMed ID: 29806243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines.
    Kuzmenko V; Karabulut E; Pernevik E; Enoksson P; Gatenholm P
    Carbohydr Polym; 2018 Jun; 189():22-30. PubMed ID: 29580403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of three-dimensional printing technology in urological practice.
    Youssef RF; Spradling K; Yoon R; Dolan B; Chamberlin J; Okhunov Z; Clayman R; Landman J
    BJU Int; 2015 Nov; 116(5):697-702. PubMed ID: 26010346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoplastic Cellulose-Based Compound for Additive Manufacturing.
    Immonen K; Willberg-Keyriläinen P; Ropponen J; Nurmela A; Metsä-Kortelainen S; Kaukoniemi OV; Kangas H
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33803734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting.
    Yadav C; Saini A; Zhang W; You X; Chauhan I; Mohanty P; Li X
    Int J Biol Macromol; 2021 Jan; 166():1586-1616. PubMed ID: 33186649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets.
    Sadia M; Sośnicka A; Arafat B; Isreb A; Ahmed W; Kelarakis A; Alhnan MA
    Int J Pharm; 2016 Nov; 513(1-2):659-668. PubMed ID: 27640246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Development of a Bacterial Nanocellulose/Cationic Starch Hydrogel for the Production of Sustainable 3D-Printed Packaging Foils.
    Dermol Š; Borin B; Gregor-Svetec D; Slemenik Perše L; Lavrič G
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.
    Li Q; Guan X; Cui M; Zhu Z; Chen K; Wen H; Jia D; Hou J; Xu W; Yang X; Pan W
    Int J Pharm; 2018 Jan; 535(1-2):325-332. PubMed ID: 29051121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.