These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 30318588)
1. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Velotta JP; Ivy CM; Wolf CJ; Scott GR; Cheviron ZA Evolution; 2018 Dec; 72(12):2712-2727. PubMed ID: 30318588 [TBL] [Abstract][Full Text] [Related]
2. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Cheviron ZA; Connaty AD; McClelland GB; Storz JF Evolution; 2014 Jan; 68(1):48-62. PubMed ID: 24102503 [TBL] [Abstract][Full Text] [Related]
3. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice. Velotta JP; Jones J; Wolf CJ; Cheviron ZA Mol Ecol; 2016 Jun; 25(12):2870-86. PubMed ID: 27126783 [TBL] [Abstract][Full Text] [Related]
5. Pulmonary hypertension is attenuated and ventilation-perfusion matching is maintained during chronic hypoxia in deer mice native to high altitude. West CM; Wearing OH; Rhem RG; Scott GR Am J Physiol Regul Integr Comp Physiol; 2021 Jun; 320(6):R800-R811. PubMed ID: 33826424 [TBL] [Abstract][Full Text] [Related]
6. Function of left ventricle mitochondria in highland deer mice and lowland mice. Mahalingam S; Coulson SZ; Scott GR; McClelland GB J Comp Physiol B; 2023 Mar; 193(2):207-217. PubMed ID: 36795175 [TBL] [Abstract][Full Text] [Related]
7. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. Schweizer RM; Velotta JP; Ivy CM; Jones MR; Muir SM; Bradburd GS; Storz JF; Scott GR; Cheviron ZA PLoS Genet; 2019 Nov; 15(11):e1008420. PubMed ID: 31697676 [TBL] [Abstract][Full Text] [Related]
8. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. Bautista NM; Herrera ND; Shadowitz E; Wearing OH; Cheviron ZA; Scott GR; Storz JF Proc Natl Acad Sci U S A; 2024 Oct; 121(41):e2412526121. PubMed ID: 39352929 [TBL] [Abstract][Full Text] [Related]
9. Coordinated changes across the O Tate KB; Wearing OH; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR Proc Biol Sci; 2020 May; 287(1927):20192750. PubMed ID: 32429808 [TBL] [Abstract][Full Text] [Related]
10. Acclimatization of low altitude-bred deer mice ( Peromyscus maniculatus) to high altitude. Dane DM; Cao K; Lu H; Yilmaz C; Dolan J; Thaler CD; Ravikumar P; Hammond KA; Hsia CCW J Appl Physiol (1985); 2018 Nov; 125(5):1411-1423. PubMed ID: 30091664 [TBL] [Abstract][Full Text] [Related]
11. Gene regulatory changes underlie developmental plasticity in respiration and aerobic performance in highland deer mice. Schweizer RM; Ivy CM; Natarajan C; Scott GR; Storz JF; Cheviron ZA Mol Ecol; 2023 Jul; 32(13):3483-3496. PubMed ID: 37073620 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Storz JF; Runck AM; Sabatino SJ; Kelly JK; Ferrand N; Moriyama H; Weber RE; Fago A Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14450-5. PubMed ID: 19667207 [TBL] [Abstract][Full Text] [Related]