These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 30318668)
1. Enhancing the Efficacy of Photodynamic Therapy through a Porphyrin/POSS Alternating Copolymer. Jin J; Zhu Y; Zhang Z; Zhang W Angew Chem Int Ed Engl; 2018 Dec; 57(50):16354-16358. PubMed ID: 30318668 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Cellular Uptake and Photodynamic Effect with Amphiphilic Fluorinated Porphyrins: The Role of Sulfoester Groups and the Nature of Reactive Oxygen Species. Pucelik B; Sułek A; Drozd A; Stochel G; Pereira MM; Pinto SMA; Arnaut LG; Dąbrowski JM Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316355 [TBL] [Abstract][Full Text] [Related]
5. A comprehensive review on singlet oxygen generation in nanomaterials and conjugated polymers for photodynamic therapy in the treatment of cancer. Singh N; Sen Gupta R; Bose S Nanoscale; 2024 Feb; 16(7):3243-3268. PubMed ID: 38265094 [TBL] [Abstract][Full Text] [Related]
6. Acid-Triggered Nanoexpansion Polymeric Micelles for Enhanced Photodynamic Therapy. Zhong S; Chen C; Yang G; Zhu Y; Cao H; Xu B; Luo Y; Gao Y; Zhang W ACS Appl Mater Interfaces; 2019 Sep; 11(37):33697-33705. PubMed ID: 31487149 [TBL] [Abstract][Full Text] [Related]
7. Tumor Microenvironment-Triggered Self-Adaptive Polymeric Photosensitizers for Enhanced Photodynamic Therapy. Cui Z; Ji R; Xie J; Wang C; Tian J; Zhang W Biomacromolecules; 2024 Apr; 25(4):2302-2311. PubMed ID: 38507248 [TBL] [Abstract][Full Text] [Related]
8. Poly(photosensitizer) Nanoparticles for Enhanced in Vivo Photodynamic Therapy by Interrupting the π-π Stacking and Extending Circulation Time. Zheng N; Zhang Z; Kuang J; Wang C; Zheng Y; Lu Q; Bai Y; Li Y; Wang A; Song W ACS Appl Mater Interfaces; 2019 May; 11(20):18224-18232. PubMed ID: 31046231 [TBL] [Abstract][Full Text] [Related]
9. G-Quadruplex/Porphyrin Composite Photosensitizer: A Facile Way to Promote Absorption Redshift and Photodynamic Therapy Efficacy. Cheng M; Cui YX; Wang J; Zhang J; Zhu LN; Kong DM ACS Appl Mater Interfaces; 2019 Apr; 11(14):13158-13167. PubMed ID: 30901194 [TBL] [Abstract][Full Text] [Related]
10. Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy. Costa LD; e Silva Jde A; Fonseca SM; Arranja CT; Urbano AM; Sobral AJ Molecules; 2016 Mar; 21(4):439. PubMed ID: 27043519 [TBL] [Abstract][Full Text] [Related]
11. Glycopolymeric Photosensitizers with Cholic Acid for HepG2-Targeted Chemo-Photodynamic Synergistic Therapy. Yu M; Wang R; Ma Z; Zhu M Biomacromolecules; 2023 May; 24(5):2301-2313. PubMed ID: 37067047 [TBL] [Abstract][Full Text] [Related]
12. Core-shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. Ballestri M; Caruso E; Guerrini A; Ferroni C; Banfi S; Gariboldi M; Monti E; Sotgiu G; Varchi G J Photochem Photobiol B; 2018 Sep; 186():169-177. PubMed ID: 30064063 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale Organic-Inorganic Hybrid Photosensitizers for Highly Effective Photodynamic Cancer Therapy. Chen J; Xu Y; Gao Y; Yang D; Wang F; Zhang L; Bao B; Wang L ACS Appl Mater Interfaces; 2018 Jan; 10(1):248-255. PubMed ID: 29241325 [TBL] [Abstract][Full Text] [Related]
14. Random versus Block Glycopolymers Bearing Betulin and Porphyrin for Enhanced Photodynamic Therapy. Ma Z; An R; Chen M; Wang X; Zhu M Biomacromolecules; 2022 Dec; 23(12):5074-5083. PubMed ID: 36350056 [TBL] [Abstract][Full Text] [Related]
15. The self-assembly of a hybrid photosensitizer for the synergistically enhanced photodynamic/photothermal therapy. Chen J; Cui Y; Song K; Liu T; Zhou L; Bao B; Wang R; Wang L Biomater Sci; 2021 Mar; 9(6):2115-2123. PubMed ID: 33481965 [TBL] [Abstract][Full Text] [Related]
16. New porphyrin photosensitizers-Synthesis, singlet oxygen yield, photophysical properties and application in PDT. Wang X; Lv H; Sun Y; Zu G; Zhang X; Song Y; Zhao F; Wang J Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121447. PubMed ID: 35689847 [TBL] [Abstract][Full Text] [Related]
17. The bromoporphyrins as promising anti-tumor photosensitizers in vitro. Li MY; Mi L; Namulinda T; Yan YJ; Zhou XP; Chen ZL Photochem Photobiol Sci; 2023 Feb; 22(2):427-439. PubMed ID: 36344865 [TBL] [Abstract][Full Text] [Related]
18. Rational engineering of semiconductor QDs enabling remarkable Shen Y; Sun Y; Yan R; Chen E; Wang H; Ye D; Xu JJ; Chen HY Biomaterials; 2017 Dec; 148():31-40. PubMed ID: 28961533 [TBL] [Abstract][Full Text] [Related]
19. Incorporation of Porphyrin to π-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy. Chang K; Tang Y; Fang X; Yin S; Xu H; Wu C Biomacromolecules; 2016 Jun; 17(6):2128-36. PubMed ID: 27219282 [TBL] [Abstract][Full Text] [Related]
20. Self-Amplified Photodynamic Therapy through the Liu Z; Cao T; Xue Y; Li M; Wu M; Engle JW; He Q; Cai W; Lan M; Zhang W Angew Chem Int Ed Engl; 2020 Feb; 59(9):3711-3717. PubMed ID: 31808983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]