These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30318700)

  • 21. Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries.
    Hu X; Zhu Z; Cheng F; Tao Z; Chen J
    Nanoscale; 2015 Jul; 7(28):11833-40. PubMed ID: 26119364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li-O
    Liu S; Wang C; Dong S; Hou H; Wang B; Wang X; Chen X; Cui G
    RSC Adv; 2018 Aug; 8(49):27973-27978. PubMed ID: 35542720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cathode Surface-Induced, Solvation-Mediated, Micrometer-Sized Li
    Xu JJ; Chang ZW; Wang Y; Liu DP; Zhang Y; Zhang XB
    Adv Mater; 2016 Nov; 28(43):9620-9628. PubMed ID: 27634572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous Materials Applied in Nonaqueous Li-O
    Wang H; Wang X; Li M; Zheng L; Guan D; Huang X; Xu J; Yu J
    Adv Mater; 2020 Nov; 32(44):e2002559. PubMed ID: 32715511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance-improved Li-O
    Yu H; Dinh KN; Sun Y; Fan H; Wang Y; Jing Y; Li S; Srinivasan M; Yan Q
    Nanoscale; 2018 Aug; 10(31):14877-14884. PubMed ID: 30043806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MnCo
    Cao X; Sun Z; Zheng X; Jin C; Tian J; Li X; Yang R
    ChemSusChem; 2018 Feb; 11(3):574-579. PubMed ID: 29235727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ CVD Derived Co-N-C Composite as Highly Efficient Cathode for Flexible Li-O
    Yang ZD; Yang XY; Liu T; Chang ZW; Yin YB; Zhang XB; Yan JM; Jiang Q
    Small; 2018 Oct; 14(43):e1800590. PubMed ID: 30047210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Dispersed Ru-Co Nanoparticles Interfaced With Nitrogen-Doped Carbon Polyhedron for High Efficiency Reversible Li-O
    Tong Z; Lv C; Zhou Y; Zhang PF; Xiang CC; Li ZG; Wang Z; Liu ZK; Li JT; Sun SG
    Small; 2022 Dec; 18(48):e2204836. PubMed ID: 36251775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilizing electrochemical Li-O
    Wang HF; Li JF; Sun XX; Xu JJ
    Nanoscale; 2019 Jun; 11(24):11513-11520. PubMed ID: 31038505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. C
    Wu A; Shen S; Yan X; Xia G; Zhang Y; Zhu F; Zhang J
    Nanoscale; 2018 Jul; 10(26):12763-12770. PubMed ID: 29946588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-Dimensional Interconnected Network Architecture with Homogeneously Dispersed Carbon Nanotubes and Layered MoS
    Hu A; Long J; Shu C; Liang R; Li J
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34077-34086. PubMed ID: 30207681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Process for a Free-Standing and Stable All-Metal Structure for Symmetrical Lithium-Oxygen Batteries.
    Luo N; Ji GJ; Wang HF; Li F; Liu QC; Xu JJ
    ACS Nano; 2020 Mar; 14(3):3281-3289. PubMed ID: 32119516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanostructured porous RuO2/MnO2 as a highly efficient catalyst for high-rate Li-O2 batteries.
    Wang G; Huang L; Huang W; Xie J; Du G; Zhang S; Zhu P; Cao G; Zhao X
    Nanoscale; 2015 Dec; 7(48):20614-24. PubMed ID: 26592423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.
    Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring PVFM-Based Janus Membrane-Supporting Gel Polymer Electrolyte for Highly Durable Li-O
    Meng N; Lian F; Li Y; Zhao X; Zhang L; Lu S; Li H
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22237-22247. PubMed ID: 29897229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of the Activation Process on the Microstructure and Electrochemical Properties of N-Doped Carbon Cathodes in Li-O
    Li S; Wang M; Yao Y; Zhao T; Yang L; Wu F
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34997-35004. PubMed ID: 31469535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved structural design of single- and double-wall MnCo
    Wu H; Sun W; Shen J; Lu C; Wang Y; Wang Z; Sun K
    Nanoscale; 2018 Jul; 10(27):13149-13158. PubMed ID: 29963679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable Electrochemical Fabrication of KO
    Yu W; Wang H; Qin L; Hu J; Liu L; Li B; Zhai D; Kang F
    ACS Appl Mater Interfaces; 2018 May; 10(20):17156-17166. PubMed ID: 29719955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.