These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30318757)

  • 1. Infrared and Raman active vibrational modes in MoS
    Evarestov RA; Bandura AV
    J Comput Chem; 2018 Oct; 39(26):2163-2172. PubMed ID: 30318757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon spectra, electronic, and thermodynamic properties of WS
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Nov; 38(30):2581-2593. PubMed ID: 28833274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Calculations of Phonons and Thermodynamic Properties of Zr(Hf)S
    Domnin AV; Bandura AV; Evarestov RA
    J Comput Chem; 2020 Mar; 41(8):759-768. PubMed ID: 31828832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using nanotubes to study the phonon spectrum of two-dimensional materials.
    Carrete J; Ngoc Tuoc V; Madsen GKH
    Phys Chem Chem Phys; 2019 Feb; 21(9):5215-5223. PubMed ID: 30775756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of thermodynamic properties of MoS
    Bandura AV; Lukyanov SI; Evarestov RA
    J Mol Graph Model; 2018 Oct; 85():212-222. PubMed ID: 30227366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles study on structural, thermal, mechanical and dynamic stability of T'-MoS
    Liu YC; Wang V; Xia MG; Zhang SL
    J Phys Condens Matter; 2017 Mar; 29(9):095702. PubMed ID: 28129207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes.
    Rao AM; Richter E; Bandow S; Chase B; Eklund PC; Williams KA; Fang S; Subbaswamy KR; Menon M; Thess A; Smalley RE; Dresselhaus G; Dresselhaus MS
    Science; 1997 Jan; 275(5297):187-91. PubMed ID: 8985007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon vibrational frequencies of all single-wall carbon nanotubes at the lambda point: reduced matrix calculations.
    Wang Y; Wu Y; Feng M; Wang H; Jin Q; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1102-5. PubMed ID: 18472297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calculations of phonon dispersion relations for single-wall carbon armchair and zigzag nanotubes.
    Wang Y; Zhang B; Jin Q; Li B; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1149-52. PubMed ID: 17329162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles modeling of hafnia-based nanotubes.
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Sep; 38(24):2088-2099. PubMed ID: 28618024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry Properties of Single-Walled BC(2)N Nanotubes.
    Pan H; Feng YP; Lin J
    Nanoscale Res Lett; 2009 Feb; 4(6):498-502. PubMed ID: 20596334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Family behaviour of Raman-active phonon frequencies of single-wall nanotubes of C, BN and BC3.
    Wang H; Cao X; Feng M; Wang Y; Jin Q; Ding D; Lan G
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1932-7. PubMed ID: 18838291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Group theory analysis of phonons in monolayer chromium trihalides and their Janus structures.
    Liu YC; Niu HB; Lin JB; Wang V
    Phys Chem Chem Phys; 2022 Nov; 24(46):28465-28476. PubMed ID: 36408743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast generation of fundamental and multiple-order phonon excitations in highly enriched (6,5) single-wall carbon nanotubes.
    Lim YS; Nugraha AR; Cho SJ; Noh MY; Yoon EJ; Liu H; Kim JH; Telg H; Hároz EH; Sanders GD; Baik SH; Kataura H; Doorn SK; Stanton CJ; Saito R; Kono J; Joo T
    Nano Lett; 2014 Mar; 14(3):1426-32. PubMed ID: 24527806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moiré Phonons in Twisted Bilayer MoS
    Lin ML; Tan QH; Wu JB; Chen XS; Wang JH; Pan YH; Zhang X; Cong X; Zhang J; Ji W; Hu PA; Liu KH; Tan PH
    ACS Nano; 2018 Aug; 12(8):8770-8780. PubMed ID: 30086224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single mode phonon energy transmission in functionalized carbon nanotubes.
    Lee J; Varshney V; Roy AK; Farmer BL
    J Chem Phys; 2011 Sep; 135(10):104109. PubMed ID: 21932878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the indirect-direct band gap transition in the MoS
    Wu HH; Meng Q; Huang H; Liu CT; Wang XL
    Phys Chem Chem Phys; 2018 Jan; 20(5):3608-3613. PubMed ID: 29340382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helicity-resolved Raman scattering of MoS
    Yang MM; Wu H; Tan L; Ma Y; Zhao YN; Liu Y; Yang FR; Wu CL; Liu XL; Liang BL; Li XL
    Opt Lett; 2023 Feb; 48(4):888-891. PubMed ID: 36790967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chirality dependence of quantum thermal transport in carbon nanotubes at low temperatures: a first-principles study.
    Hata T; Kawai H; Ohto T; Yamashita K
    J Chem Phys; 2013 Jul; 139(4):044711. PubMed ID: 23902007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.