These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30319142)
21. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Sinclair AL; Graham LLB; Putra EI; Saharjo BH; Applegate G; Grover SP; Cochrane MA Sci Total Environ; 2020 Jan; 699():134199. PubMed ID: 31522054 [TBL] [Abstract][Full Text] [Related]
22. Topographic and climatic controls of peatland distribution on the Tibetan Plateau. Sun J; Gallego-Sala A; Yu Z Sci Rep; 2023 Sep; 13(1):14811. PubMed ID: 37684329 [TBL] [Abstract][Full Text] [Related]
23. Angolan highlands peatlands: Extent, age and growth dynamics. Lourenco M; Fitchett JM; Woodborne S Sci Total Environ; 2022 Mar; 810():152315. PubMed ID: 34914988 [TBL] [Abstract][Full Text] [Related]
24. The spatio-temporal patterns of the topsoil organic carbon density and its influencing factors based on different estimation models in the grassland of Qinghai-Tibet Plateau. Liu S; Sun Y; Dong Y; Zhao H; Dong S; Zhao S; Beazley R PLoS One; 2019; 14(12):e0225952. PubMed ID: 31805113 [TBL] [Abstract][Full Text] [Related]
25. Depression of soil nitrogen fixation by drying soil in a degraded alpine peatland. Zhang X; Jia X; Wu H; Li J; Yan L; Wang J; Li Y; Kang X Sci Total Environ; 2020 Dec; 747():141084. PubMed ID: 32771776 [TBL] [Abstract][Full Text] [Related]
26. Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadow on the Qinghai-Tibet Plateau. Alhassan AM; Ma W; Li G; Jiang Z; Wu J; Chen G Ecol Evol; 2018 Dec; 8(23):11999-12010. PubMed ID: 30598794 [TBL] [Abstract][Full Text] [Related]
28. Annual ecosystem respiration variability of alpine peatland on the eastern Qinghai-Tibet Plateau and its controlling factors. Peng H; Hong B; Hong Y; Zhu Y; Cai C; Yuan L; Wang Y Environ Monit Assess; 2015 Sep; 187(9):550. PubMed ID: 26239569 [TBL] [Abstract][Full Text] [Related]
29. CO Hoyt AM; Gandois L; Eri J; Kai FM; Harvey CF; Cobb AR Glob Chang Biol; 2019 Sep; 25(9):2885-2899. PubMed ID: 31100190 [TBL] [Abstract][Full Text] [Related]
30. Degradation Reduces Microbial Richness and Alters Microbial Functions in an Australian Peatland. Birnbaum C; Wood J; Lilleskov E; Lamit LJ; Shannon J; Brewer M; Grover S Microb Ecol; 2023 Apr; 85(3):875-891. PubMed ID: 35867139 [TBL] [Abstract][Full Text] [Related]
31. Comprehensive assessment of nitrous oxide emissions and mitigation potentials across European peatlands. Lin F; Zuo H; Ma X; Ma L Environ Pollut; 2022 May; 301():119041. PubMed ID: 35217134 [TBL] [Abstract][Full Text] [Related]
32. Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Wallage ZE; Holden J; McDonald AT Sci Total Environ; 2006 Aug; 367(2-3):811-21. PubMed ID: 16600338 [TBL] [Abstract][Full Text] [Related]
33. Invasive earthworm and soil litter response to the experimental removal of white-tailed deer and an invasive shrub. Mahon MB; Crist TO Ecology; 2019 May; 100(5):e02688. PubMed ID: 30854636 [TBL] [Abstract][Full Text] [Related]
34. Sea level rise and climate change acting as interactive stressors on development and dynamics of tropical peatlands in coastal Sumatra and South Borneo since the Last Glacial Maximum. Hapsari KA; Jennerjahn T; Nugroho SH; Yulianto E; Behling H Glob Chang Biol; 2022 May; 28(10):3459-3479. PubMed ID: 35312144 [TBL] [Abstract][Full Text] [Related]
35. Nitrogen addition may promote soil organic carbon storage and CO Luo L; Yu J; Zhu L; Gikas P; He Y; Xiao Y; Deng S; Zhang Y; Zhang S; Zhou W; Deng O J Environ Manage; 2022 Dec; 324():116376. PubMed ID: 36208518 [TBL] [Abstract][Full Text] [Related]
36. Ericoid shrub encroachment shifts aboveground-belowground linkages in three peatlands across Europe and Western Siberia. Buttler A; Bragazza L; Laggoun-Défarge F; Gogo S; Toussaint ML; Lamentowicz M; Chojnicki BH; Słowiński M; Słowińska S; Zielińska M; Reczuga M; Barabach J; Marcisz K; Lamentowicz Ł; Harenda K; Lapshina E; Gilbert D; Schlaepfer R; Jassey VEJ Glob Chang Biol; 2023 Dec; 29(23):6772-6793. PubMed ID: 37578632 [TBL] [Abstract][Full Text] [Related]
37. Impact of fertiliser, water table, and warming on celery yield and CO Matysek M; Leake J; Banwart S; Johnson I; Page S; Kaduk J; Smalley A; Cumming A; Zona D Sci Total Environ; 2019 Jun; 667():179-190. PubMed ID: 30826678 [TBL] [Abstract][Full Text] [Related]
38. Overriding water table control on managed peatland greenhouse gas emissions. Evans CD; Peacock M; Baird AJ; Artz RRE; Burden A; Callaghan N; Chapman PJ; Cooper HM; Coyle M; Craig E; Cumming A; Dixon S; Gauci V; Grayson RP; Helfter C; Heppell CM; Holden J; Jones DL; Kaduk J; Levy P; Matthews R; McNamara NP; Misselbrook T; Oakley S; Page SE; Rayment M; Ridley LM; Stanley KM; Williamson JL; Worrall F; Morrison R Nature; 2021 May; 593(7860):548-552. PubMed ID: 33882562 [TBL] [Abstract][Full Text] [Related]
39. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Flanagan NE; Wang H; Winton S; Richardson CJ Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914 [TBL] [Abstract][Full Text] [Related]
40. The divergent vertical pattern and assembly of soil bacterial and fungal communities in response to short-term warming in an alpine peatland. Wang X; Li Y; Yan Z; Hao Y; Kang E; Zhang X; Li M; Zhang K; Yan L; Yang A; Niu Y; Kang X Front Plant Sci; 2022; 13():986034. PubMed ID: 36160969 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]