These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30319319)

  • 1. On-demand in situ generation of oxygen in a nanofluidic embedded planar microband electrochemical reactor.
    Xu W; Foster E; Ma C; Bohn PW
    Microfluid Nanofluidics; 2015 Nov; 19(5):1181-1189. PubMed ID: 30319319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolysis in nanochannels for in situ reagent generation in confined geometries.
    Contento NM; Branagan SP; Bohn PW
    Lab Chip; 2011 Nov; 11(21):3634-41. PubMed ID: 21912801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemiluminescence reaction pathways in nanofluidic devices.
    Voci S; Al-Kutubi H; Rassaei L; Mathwig K; Sojic N
    Anal Bioanal Chem; 2020 Jul; 412(17):4067-4075. PubMed ID: 32342130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integrated Glass Nanofluidic Device Enabling In-situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure-Driven Flow Conditions.
    Xu Y; Xu B
    Small; 2015 Dec; 11(46):6165-71. PubMed ID: 26485695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local nano-electrode fabrication utilizing nanofluidic and nano-electrochemical control.
    Morikawa K; Takeuchi T; Kitamori T
    Electrophoresis; 2024 Jul; ():. PubMed ID: 38962855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced annihilation electrochemiluminescence by nanofluidic confinement.
    Al-Kutubi H; Voci S; Rassaei L; Sojic N; Mathwig K
    Chem Sci; 2018 Dec; 9(48):8946-8950. PubMed ID: 30647886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-Driven Reversible Gating of Solid-State Nanochannels.
    Laucirica G; Marmisollé WA; Toimil-Molares ME; Trautmann C; Azzaroni O
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30001-30009. PubMed ID: 31335118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuneable elastomeric nanochannels for nanofluidic manipulation.
    Huh D; Mills KL; Zhu X; Burns MA; Thouless MD; Takayama S
    Nat Mater; 2007 Jun; 6(6):424-8. PubMed ID: 17486084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation Dependent Surface Charge Regulation in Gated Nanofluidic Devices.
    Fuest M; Rangharajan KK; Boone C; Conlisk AT; Prakash S
    Anal Chem; 2017 Feb; 89(3):1593-1601. PubMed ID: 28208271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanochannel-Ion Channel Hybrid Device for Ultrasensitive Monitoring of Biomolecular Recognition Events.
    Zhao XP; Zhou Y; Zhang QW; Yang DR; Wang C; Xia XH
    Anal Chem; 2019 Jan; 91(1):1185-1193. PubMed ID: 30525477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.
    Fritzsche J; Albinsson D; Fritzsche M; Antosiewicz TJ; Westerlund F; Langhammer C
    Nano Lett; 2016 Dec; 16(12):7857-7864. PubMed ID: 27960495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed immunosensing and kinetics monitoring in nanofluidic devices with highly enhanced target capture efficiency.
    Lin YL; Huang YJ; Teerapanich P; Leïchlé T; Chou CF
    Biomicrofluidics; 2016 May; 10(3):034114. PubMed ID: 27375819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing.
    Strychalski EA; Stavis SM; Craighead HG
    Nanotechnology; 2008 Aug; 19(31):315301. PubMed ID: 21828782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical removal of carbamazepine in water with Ti/PbO2 cylindrical mesh anode.
    García-Espinoza JD; Gortáres-Moroyoqui P; Orta-Ledesma MT; Drogui P; Mijaylova-Nacheva P
    Water Sci Technol; 2016; 73(5):1155-65. PubMed ID: 26942539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stationary chemical gradients for concentration gradient-based separation and focusing in nanofluidic channels.
    Hsu WL; Inglis DW; Jeong H; Dunstan DE; Davidson MR; Goldys EM; Harvie DJ
    Langmuir; 2014 May; 30(18):5337-48. PubMed ID: 24725102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced mass transport of electroactive species to annular nanoband electrodes embedded in nanocapillary array membranes.
    Branagan SP; Contento NM; Bohn PW
    J Am Chem Soc; 2012 May; 134(20):8617-24. PubMed ID: 22506659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-Free Imaging of Catalytic H
    Altenburger B; Andersson C; Levin S; Westerlund F; Fritzsche J; Langhammer C
    ACS Nano; 2023 Nov; 17(21):21030-21043. PubMed ID: 37847543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.