These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30319366)

  • 1. Neural Mechanisms Involved in Mental Imagery of Slip-Perturbation While Walking: A Preliminary fMRI Study.
    Bhatt T; Patel P; Dusane S; DelDonno SR; Langenecker SA
    Front Behav Neurosci; 2018; 12():203. PubMed ID: 30319366
    [No Abstract]   [Full Text] [Related]  

  • 2. Examining Neural Plasticity for Slip-Perturbation Training: An fMRI Study.
    Patel PJ; Bhatt T; DelDonno SR; Langenecker SA; Dusane S
    Front Neurol; 2018; 9():1181. PubMed ID: 30728803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging.
    Jahn K; Deutschländer A; Stephan T; Strupp M; Wiesmann M; Brandt T
    Neuroimage; 2004 Aug; 22(4):1722-31. PubMed ID: 15275928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging of human supraspinal locomotor and postural control in fMRI.
    Zwergal A; Linn J; Xiong G; Brandt T; Strupp M; Jahn K
    Neurobiol Aging; 2012 Jun; 33(6):1073-84. PubMed ID: 21051105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shared and Task-Specific Muscle Synergies during Normal Walking and Slipping.
    Nazifi MM; Yoon HU; Beschorner K; Hur P
    Front Hum Neurosci; 2017; 11():40. PubMed ID: 28220067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional MR imaging of a simulated balance task.
    Karim HT; Sparto PJ; Aizenstein HJ; Furman JM; Huppert TJ; Erickson KI; Loughlin PJ
    Brain Res; 2014 Mar; 1555():20-7. PubMed ID: 24480476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison.
    la Fougère C; Zwergal A; Rominger A; Förster S; Fesl G; Dieterich M; Brandt T; Strupp M; Bartenstein P; Jahn K
    Neuroimage; 2010 May; 50(4):1589-98. PubMed ID: 20034578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tripping Elicits Earlier and Larger Deviations in Linear Head Acceleration Compared to Slipping.
    Arena SL; Davis JL; Grant JW; Madigan ML
    PLoS One; 2016; 11(11):e0165670. PubMed ID: 27802298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebello-cortical functional connectivity may regulate reactive balance control in older adults with mild cognitive impairment.
    Kannan L; Bhatt T; Ajilore O
    Front Neurol; 2023; 14():1041434. PubMed ID: 37139074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.
    Patel PJ; Bhatt T
    Neuroscience; 2016 Oct; 333():252-63. PubMed ID: 27418344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Activity During Mental Rotation in Deaf Signers: The Influence of Long-Term Sign Language Experience.
    Le HB; Zhang HH; Wu QL; Zhang J; Yin JJ; Ma SH
    Ear Hear; 2018; 39(5):1015-1024. PubMed ID: 29298164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does stroke-induced sensorimotor impairment and perturbation intensity affect gait-slip outcomes?
    Dusane S; Gangwani R; Patel P; Bhatt T
    J Biomech; 2021 Mar; 118():110255. PubMed ID: 33581438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor adaptation and immediate retention to overground gait-slip perturbation training in people with chronic stroke: an experimental trial with a comparison group.
    Bhatt T; Dusane S; Gangwani R; Wang S; Kannan L
    Front Sports Act Living; 2023; 5():1195773. PubMed ID: 37780126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging does not affect the intralimb coordination elicited by slip-like perturbation of different intensities.
    Aprigliano F; Martelli D; Tropea P; Pasquini G; Micera S; Monaco V
    J Neurophysiol; 2017 Sep; 118(3):1739-1748. PubMed ID: 28701547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls.
    Yang F; Cereceres P; Qiao M
    Gait Posture; 2018 Oct; 66():160-165. PubMed ID: 30195219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors.
    Dusane S; Wang E; Bhatt T
    Restor Neurol Neurosci; 2019; 37(5):469-482. PubMed ID: 31561399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can treadmill-slip perturbation training reduce immediate risk of over-ground-slip induced fall among community-dwelling older adults?
    Wang Y; Bhatt T; Liu X; Wang S; Lee A; Wang E; Pai YC
    J Biomech; 2019 Feb; 84():58-66. PubMed ID: 30616984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia.
    Aprigliano F; Martelli D; Kang J; Kuo SH; Kang UJ; Monaco V; Micera S; Agrawal SK
    J Neuroeng Rehabil; 2019 Apr; 16(1):50. PubMed ID: 30975168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.