These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30319388)

  • 1. Open-Ended Learning: A Conceptual Framework Based on Representational Redescription.
    Doncieux S; Filliat D; Díaz-Rodríguez N; Hospedales T; Duro R; Coninx A; Roijers DM; Girard B; Perrin N; Sigaud O
    Front Neurorobot; 2018; 12():59. PubMed ID: 30319388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic Rewards for Maintenance, Approach, Avoidance, and Achievement Goal Types.
    Dhakan P; Merrick K; Rañó I; Siddique N
    Front Neurorobot; 2018; 12():63. PubMed ID: 30356820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-Temporal Compression in Reinforcement Learning With the Reward-Restricted Geodesic Metric.
    Guo S; Yan Q; Su X; Hu X; Chen F
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):5572-5589. PubMed ID: 33764874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representation learning for continuous action spaces is beneficial for efficient policy learning.
    Zhao T; Wang Y; Sun W; Chen Y; Niu G; Sugiyama M
    Neural Netw; 2023 Feb; 159():137-152. PubMed ID: 36566604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. StARformer: Transformer With State-Action-Reward Representations for Robot Learning.
    Shang J; Li X; Kahatapitiya K; Lee YC; Ryoo MS
    IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):12862-12877. PubMed ID: 36067106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring conceptual and theoretical frameworks for nurse practitioner education: a scoping review protocol.
    Wilson R; Godfrey CM; Sears K; Medves J; Ross-White A; Lambert N
    JBI Database System Rev Implement Rep; 2015 Oct; 13(10):146-55. PubMed ID: 26571290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An immediate-return reinforcement learning for the atypical Markov decision processes.
    Pan Z; Wen G; Tan Z; Yin S; Hu X
    Front Neurorobot; 2022; 16():1012427. PubMed ID: 36582302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameterized MDPs and Reinforcement Learning Problems-A Maximum Entropy Principle-Based Framework.
    Srivastava A; Salapaka SM
    IEEE Trans Cybern; 2022 Sep; 52(9):9339-9351. PubMed ID: 34406959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sample Efficient Deep Reinforcement Learning With Online State Abstraction and Causal Transformer Model Prediction.
    Lan Y; Xu X; Fang Q; Hao J
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37581972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOO-MDP: An Object-Oriented Representation for Cooperative Multiagent Reinforcement Learning.
    Da Silva FL; Glatt R; Costa AHR
    IEEE Trans Cybern; 2019 Feb; 49(2):567-579. PubMed ID: 29990289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Context transfer in reinforcement learning using action-value functions.
    Mousavi A; Nadjar Araabi B; Nili Ahmadabadi M
    Comput Intell Neurosci; 2014; 2014():428567. PubMed ID: 25610457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploratory State Representation Learning.
    Merckling A; Perrin-Gilbert N; Coninx A; Doncieux S
    Front Robot AI; 2022; 9():762051. PubMed ID: 35237669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Maximum Divergence Approach to Optimal Policy in Deep Reinforcement Learning.
    Yang Z; Qu H; Fu M; Hu W; Zhao Y
    IEEE Trans Cybern; 2023 Mar; 53(3):1499-1510. PubMed ID: 34478393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving.
    Eppe M; Nguyen PDH; Wermter S
    Front Robot AI; 2019; 6():123. PubMed ID: 33501138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incremental learning of skill collections based on intrinsic motivation.
    Metzen JH; Kirchner F
    Front Neurorobot; 2013; 7():11. PubMed ID: 23898265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proof of concept reinforcement learning based tool for non parametric population pharmacokinetics workflow optimization.
    Otalvaro JD; Yamada WM; Hernandez AM; Zuluaga AF; Chen R; Neely MN
    J Pharmacokinet Pharmacodyn; 2023 Feb; 50(1):33-43. PubMed ID: 36478350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.