These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 30319439)

  • 21. Modifications of the Dmax method in comparison to the maximal lactate steady state in young male athletes.
    Zwingmann L; Strütt S; Martin A; Volmary P; Bloch W; Wahl P
    Phys Sportsmed; 2019 May; 47(2):174-181. PubMed ID: 30408426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The lactate and ventilatory thresholds in resistance training.
    Maté-Muñoz JL; Domínguez R; Lougedo JH; Garnacho-Castaño MV
    Clin Physiol Funct Imaging; 2017 Sep; 37(5):518-524. PubMed ID: 26749178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Steady-state [Formula: see text] above MLSS: evidence that critical speed better represents maximal metabolic steady state in well-trained runners.
    Nixon RJ; Kranen SH; Vanhatalo A; Jones AM
    Eur J Appl Physiol; 2021 Nov; 121(11):3133-3144. PubMed ID: 34351531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reverse lactate threshold test accurately predicts maximal lactate steady state and 5 km performance in running.
    Wahl P; Manunzio C; Zwingmann L; van de Weyer S; Bloch W
    Biol Sport; 2021 Jun; 38(2):285-290. PubMed ID: 34079174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing anaerobic speed reserve: A systematic review on the validity and reliability of methods to determine maximal aerobic speed and maximal sprinting speed in running-based sports.
    Thron M; Düking P; Ruf L; Härtel S; Woll A; Altmann S
    PLoS One; 2024; 19(1):e0296866. PubMed ID: 38252665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maximal lactate steady state in trained adolescent runners.
    Almarwaey OA; Jones AM; Tolfrey K
    J Sports Sci; 2004 Feb; 22(2):215-25. PubMed ID: 14998099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How narrow is the spectrum of submaximal speeds in swimming?
    Greco CC; de Oliveira MF; Caputo F; Denadai BS; Dekerle J
    J Strength Cond Res; 2013 May; 27(5):1450-4. PubMed ID: 22744415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maximal Lactate Steady State and Lactate Thresholds in the Cross-Country Skiing Sub-Technique Double Poling.
    Jakobsson J; Malm C
    Int J Exerc Sci; 2019; 12(2):57-68. PubMed ID: 30899341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors Influencing Running Velocity at Lactate Threshold in Male and Female Runners at Different Levels of Performance.
    Støa EM; Helgerud J; Rønnestad BR; Hansen J; Ellefsen S; Støren Ø
    Front Physiol; 2020; 11():585267. PubMed ID: 33250778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state.
    Faude O; Hecksteden A; Hammes D; Schumacher F; Besenius E; Sperlich B; Meyer T
    Appl Physiol Nutr Metab; 2017 Feb; 42(2):142-147. PubMed ID: 28128633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical swimming speed does not represent the speed at maximal lactate steady state.
    Dekerle J; Pelayo P; Clipet B; Depretz S; Lefevre T; Sidney M
    Int J Sports Med; 2005 Sep; 26(7):524-30. PubMed ID: 16195984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reliability of Peak Running Velocity Obtained on the Track Field in Runners of Different Performance Levels.
    Manoel FA; Peserico CS; Machado FA
    Front Physiol; 2021; 12():680913. PubMed ID: 34966286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is the critical running speed related to the intermittent maximal lactate steady state?
    de Lucas RD; Dittrich N; Junior RB; de Souza KM; Guglielmo LG
    J Sports Sci Med; 2012; 11(1):89-94. PubMed ID: 24149124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of a single-day maximal lactate steady state assessment protocol.
    Kuphal KE; Potteiger JA; Frey BB; Hise MP
    J Sports Med Phys Fitness; 2004 Jun; 44(2):132-40. PubMed ID: 15470310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography.
    Lucía A; Sánchez O; Carvajal A; Chicharro JL
    Br J Sports Med; 1999 Jun; 33(3):178-85. PubMed ID: 10378070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Higher Accuracy of the Lactate Minimum Test Compared to Established Threshold Concepts to Determine Maximal Lactate Steady State in Running.
    Wahl P; Zwingmann L; Manunzio C; Wolf J; Bloch W
    Int J Sports Med; 2018 Jul; 39(7):541-548. PubMed ID: 29775989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relationship of muscle oxygen saturation analyzer with other monitoring and quantification tools in a maximal incremental treadmill test.
    Osmani F; Lago-Fuentes C; Alemany-Iturriaga J; Barcala-Furelos M
    Front Physiol; 2023; 14():1155037. PubMed ID: 37275231
    [No Abstract]   [Full Text] [Related]  

  • 38. Detecting mechanical breakpoints during treadmill-based graded exercise test: Relationships to ventilatory thresholds.
    Li SN; Peeling P; Hansen C; Van Alsenoy K; Ryu JH; Girard O
    Eur J Sport Sci; 2022 Jul; 22(7):1025-1034. PubMed ID: 34334115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maximal lactate steady state as a training stimulus.
    Philp A; Macdonald AL; Carter H; Watt PW; Pringle JS
    Int J Sports Med; 2008 Jun; 29(6):475-9. PubMed ID: 18302077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Two-test Protocol for the Precise Determination of the Maximal Lactate Steady State.
    Yaeger D; Murphy K; Winger J; Stavrianeas S
    Int J Exerc Sci; 2018; 11(4):681-695. PubMed ID: 29997732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.