BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30319457)

  • 1. HDAC4 Regulates Skeletal Muscle Regeneration via Soluble Factors.
    Renzini A; Marroncelli N; Noviello C; Moresi V; Adamo S
    Front Physiol; 2018; 9():1387. PubMed ID: 30319457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HDAC4 Regulates the Proliferation, Differentiation and Apoptosis of Chicken Skeletal Muscle Satellite Cells.
    Zhao J; Shen X; Cao X; He H; Han S; Chen Y; Cui C; Wei Y; Wang Y; Li D; Zhu Q; Yin H
    Animals (Basel); 2020 Jan; 10(1):. PubMed ID: 31947925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone deacetylase 4 protects from denervation and skeletal muscle atrophy in a murine model of amyotrophic lateral sclerosis.
    Pigna E; Simonazzi E; Sanna K; Bernadzki KM; Proszynski T; Heil C; Palacios D; Adamo S; Moresi V
    EBioMedicine; 2019 Feb; 40():717-732. PubMed ID: 30713114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses.
    Pigna E; Renzini A; Greco E; Simonazzi E; Fulle S; Mancinelli R; Moresi V; Adamo S
    Skelet Muscle; 2018 Feb; 8(1):6. PubMed ID: 29477142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes.
    Marroncelli N; Bianchi M; Bertin M; Consalvi S; Saccone V; De Bardi M; Puri PL; Palacios D; Adamo S; Moresi V
    Sci Rep; 2018 Feb; 8(1):3448. PubMed ID: 29472596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling.
    Huang QK; Qiao HY; Fu MH; Li G; Li WB; Chen Z; Wei J; Liang BS
    Med Sci Monit; 2016 Apr; 22():1161-70. PubMed ID: 27054781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells.
    Dai Y; Wang YM; Zhang WR; Liu XF; Li X; Ding XB; Guo H
    In Vitro Cell Dev Biol Anim; 2016 Jan; 52(1):27-34. PubMed ID: 26424132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone Lysine Methylation and Long Non-Coding RNA: The New Target Players in Skeletal Muscle Cell Regeneration.
    Mbadhi MN; Tang JM; Zhang JX
    Front Cell Dev Biol; 2021; 9():759237. PubMed ID: 34926450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myogenic Satellite Cells: Biological Milieu and Possible Clinical Applications.
    S Said R; G Mustafa A; A Asfour H; I Shaqoura E
    Pak J Biol Sci; 2017; 20(1):1-11. PubMed ID: 29023009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long non-coding RNA
    Li R; Li B; Cao Y; Li W; Dai W; Zhang L; Zhang X; Ning C; Li H; Yao Y; Tao J; Jia C; Wu W; Liu H
    Mol Ther Nucleic Acids; 2021 Jun; 24():200-211. PubMed ID: 33767916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HDAC4 Controls Muscle Homeostasis through Deacetylation of Myosin Heavy Chain, PGC-1α, and Hsc70.
    Luo L; Martin SC; Parkington J; Cadena SM; Zhu J; Ibebunjo C; Summermatter S; Londraville N; Patora-Komisarska K; Widler L; Zhai H; Trendelenburg AU; Glass DJ; Shi J
    Cell Rep; 2019 Oct; 29(3):749-763.e12. PubMed ID: 31618641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory factors and cell populations involved in skeletal muscle regeneration.
    Ten Broek RW; Grefte S; Von den Hoff JW
    J Cell Physiol; 2010 Jul; 224(1):7-16. PubMed ID: 20232319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications.
    Zhao X; Sternsdorf T; Bolger TA; Evans RM; Yao TP
    Mol Cell Biol; 2005 Oct; 25(19):8456-64. PubMed ID: 16166628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription Factor
    Li F; Yan C; Yao Y; Yang Y; Liu Y; Fan D; Zhao J; Tang Z
    Genes (Basel); 2024 Jan; 15(1):. PubMed ID: 38254955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing Satellite Cell Function During Skeletal Muscle Regeneration by Cardiotoxin Injury and Injection of Self-delivering siRNA In Vivo.
    Ahrens HE; Henze H; Schüler SC; Schmidt M; Hüttner SS; von Maltzahn J
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Platelet-Rich and Platelet-Poor Plasma on Endogenous Mechanisms of Skeletal Muscle Repair/Regeneration.
    Chellini F; Tani A; Zecchi-Orlandini S; Sassoli C
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30764506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dormancy and quiescence of skeletal muscle stem cells.
    Rocheteau P; Vinet M; Chretien F
    Results Probl Cell Differ; 2015; 56():215-35. PubMed ID: 25344673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-deficient mdx mice.
    Gallot YS; Straughn AR; Bohnert KR; Xiong G; Hindi SM; Kumar A
    Hum Mol Genet; 2018 Oct; 27(19):3449-3463. PubMed ID: 30010933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDH-mediated metabolic flow is critical for skeletal muscle stem cell differentiation and myotube formation during regeneration in mice.
    Hori S; Hiramuki Y; Nishimura D; Sato F; Sehara-Fujisawa A
    FASEB J; 2019 Jul; 33(7):8094-8109. PubMed ID: 30939245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.