These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 30319590)
1. WadD, a New Salvador-Bescós M; Gil-Ramírez Y; Zúñiga-Ripa A; Martínez-Gómez E; de Miguel MJ; Muñoz PM; Cloeckaert A; Zygmunt MS; Moriyón I; Iriarte M; Conde-Álvarez R Front Microbiol; 2018; 9():2293. PubMed ID: 30319590 [TBL] [Abstract][Full Text] [Related]
2. The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus. Gil-Ramírez Y; Conde-Álvarez R; Palacios-Chaves L; Zúñiga-Ripa A; Grilló MJ; Arce-Gorvel V; Hanniffy S; Moriyón I; Iriarte M Microb Pathog; 2014 Aug; 73():53-9. PubMed ID: 24927935 [TBL] [Abstract][Full Text] [Related]
3. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. Manterola L; Moriyón I; Moreno E; Sola-Landa A; Weiss DS; Koch MH; Howe J; Brandenburg K; López-Goñi I J Bacteriol; 2005 Aug; 187(16):5631-9. PubMed ID: 16077108 [TBL] [Abstract][Full Text] [Related]
4. Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice. Soler-Lloréns P; Gil-Ramírez Y; Zabalza-Baranguá A; Iriarte M; Conde-Álvarez R; Zúñiga-Ripa A; San Román B; Zygmunt MS; Vizcaíno N; Cloeckaert A; Grilló MJ; Moriyón I; López-Goñi I Vet Res; 2014 Jul; 45(1):72. PubMed ID: 25029920 [TBL] [Abstract][Full Text] [Related]
5. Lipopolysaccharide as a target for brucellosis vaccine design. Conde-Álvarez R; Arce-Gorvel V; Gil-Ramírez Y; Iriarte M; Grilló MJ; Gorvel JP; Moriyón I Microb Pathog; 2013 May; 58():29-34. PubMed ID: 23219811 [TBL] [Abstract][Full Text] [Related]
6. Increases of efficacy as vaccine against Brucella abortus infection in mice by simultaneous inoculation with avirulent smooth bvrS/bvrR and rough wbkA mutants. Grilló MJ; Manterola L; de Miguel MJ; Muñoz PM; Blasco JM; Moriyón I; López-Goñi I Vaccine; 2006 Apr; 24(15):2910-6. PubMed ID: 16439039 [TBL] [Abstract][Full Text] [Related]
7. Genomic Insertion of a Heterologous Acetyltransferase Generates a New Lipopolysaccharide Antigenic Structure in Martínez-Gómez E; Ståhle J; Gil-Ramírez Y; Zúñiga-Ripa A; Zaccheus M; Moriyón I; Iriarte M; Widmalm G; Conde-Álvarez R Front Microbiol; 2018; 9():1092. PubMed ID: 29887851 [TBL] [Abstract][Full Text] [Related]
8. BvrR/BvrS-controlled outer membrane proteins Omp3a and Omp3b are not essential for Brucella abortus virulence. Manterola L; Guzmán-Verri C; Chaves-Olarte E; Barquero-Calvo E; de Miguel MJ; Moriyón I; Grilló MJ; López-Goñi I; Moreno E Infect Immun; 2007 Oct; 75(10):4867-74. PubMed ID: 17664262 [TBL] [Abstract][Full Text] [Related]
9. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. Conde-Álvarez R; Arce-Gorvel V; Iriarte M; Manček-Keber M; Barquero-Calvo E; Palacios-Chaves L; Chacón-Díaz C; Chaves-Olarte E; Martirosyan A; von Bargen K; Grilló MJ; Jerala R; Brandenburg K; Llobet E; Bengoechea JA; Moreno E; Moriyón I; Gorvel JP PLoS Pathog; 2012; 8(5):e1002675. PubMed ID: 22589715 [TBL] [Abstract][Full Text] [Related]
10. Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence. Fontana C; Conde-Álvarez R; Ståhle J; Holst O; Iriarte M; Zhao Y; Arce-Gorvel V; Hanniffy S; Gorvel JP; Moriyón I; Widmalm G J Biol Chem; 2016 Apr; 291(14):7727-41. PubMed ID: 26867577 [TBL] [Abstract][Full Text] [Related]
11. Regulation of Brucella virulence by the two-component system BvrR/BvrS. López-Goñi I; Guzmán-Verri C; Manterola L; Sola-Landa A; Moriyón I; Moreno E Vet Microbiol; 2002 Dec; 90(1-4):329-39. PubMed ID: 12414153 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide. Dabral N; Jain-Gupta N; Seleem MN; Sriranganathan N; Vemulapalli R Front Cell Infect Microbiol; 2015; 5():54. PubMed ID: 26157707 [TBL] [Abstract][Full Text] [Related]
13. Lethality of Ouahrani-Bettache S; Jiménez De Bagüés MP; De La Garza J; Freddi L; Bueso JP; Lyonnais S; Al Dahouk S; De Biase D; Köhler S; Occhialini A Virulence; 2019 Dec; 10(1):868-878. PubMed ID: 31635539 [No Abstract] [Full Text] [Related]
15. Roles of genomic island 3 (GI-3) BAB1_0278 and BAB1_0263 open reading frames (ORFs) in the virulence of Brucella abortus in BALB/c mice. Céspedes S; Salgado P; Retamal-Díaz A; Vidal R; Oñate A Vet Microbiol; 2012 Apr; 156(1-2):1-7. PubMed ID: 22005180 [TBL] [Abstract][Full Text] [Related]
16. Identification of Conde-Álvarez R; Palacios-Chaves L; Gil-Ramírez Y; Salvador-Bescós M; Bárcena-Varela M; Aragón-Aranda B; Martínez-Gómez E; Zúñiga-Ripa A; de Miguel MJ; Bartholomew TL; Hanniffy S; Grilló MJ; Vences-Guzmán MÁ; Bengoechea JA; Arce-Gorvel V; Gorvel JP; Moriyón I; Iriarte M Front Microbiol; 2017; 8():2657. PubMed ID: 29375522 [TBL] [Abstract][Full Text] [Related]
18. The Transcriptional Regulator MucR, but Not Its Controlled Acid-Activated Chaperone HdeA, Is Essential for Virulence and Modulates Surface Architecture and Properties in Tartilán-Choya B; Sidhu-Muñoz RS; Vizcaíno N Front Vet Sci; 2021; 8():814752. PubMed ID: 35174240 [No Abstract] [Full Text] [Related]
19. Characterization of O-polysaccharide specific monoclonal antibodies derived from mice infected with the rough Brucella melitensis strain B115. Cloeckaert A; Zygmunt MS; Dubray G; Limet JN J Gen Microbiol; 1993 Jul; 139(7):1551-6. PubMed ID: 7690392 [TBL] [Abstract][Full Text] [Related]
20. Enhanced efficacy of recombinant Brucella abortus RB51 vaccines against B. melitensis infection in mice. Vemulapalli R; Contreras A; Sanakkayala N; Sriranganathan N; Boyle SM; Schurig GG Vet Microbiol; 2004 Sep; 102(3-4):237-45. PubMed ID: 15327798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]