BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

740 related articles for article (PubMed ID: 30319622)

  • 1. The Role of CXC Chemokine Receptors 1-4 on Immune Cells in the Tumor Microenvironment.
    Susek KH; Karvouni M; Alici E; Lundqvist A
    Front Immunol; 2018; 9():2159. PubMed ID: 30319622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature.
    Korbecki J; Kojder K; Kapczuk P; Kupnicka P; Gawrońska-Szklarz B; Gutowska I; Chlubek D; Baranowska-Bosiacka I
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemokines and Chemokine Receptors: New Targets for Cancer Immunotherapy.
    Mollica Poeta V; Massara M; Capucetti A; Bonecchi R
    Front Immunol; 2019; 10():379. PubMed ID: 30894861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer.
    Cabrero-de Las Heras S; Martínez-Balibrea E
    World J Gastroenterol; 2018 Nov; 24(42):4738-4749. PubMed ID: 30479461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of CXC chemokines and their receptors in cancer.
    Vandercappellen J; Van Damme J; Struyf S
    Cancer Lett; 2008 Aug; 267(2):226-44. PubMed ID: 18579287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor.
    Li BH; Garstka MA; Li ZF
    Mol Immunol; 2020 Jan; 117():201-215. PubMed ID: 31835202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The expression and role of CXC chemokines in colorectal cancer.
    Verbeke H; Struyf S; Laureys G; Van Damme J
    Cytokine Growth Factor Rev; 2011; 22(5-6):345-58. PubMed ID: 22000992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer.
    Nazari A; Khorramdelazad H; Hassanshahi G
    Int J Clin Oncol; 2017 Dec; 22(6):991-1000. PubMed ID: 29022185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment.
    Gao X; Sui H; Zhao S; Gao X; Su Y; Qu P
    Front Immunol; 2020; 11():585214. PubMed ID: 33613512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy.
    Bule P; Aguiar SI; Aires-Da-Silva F; Dias JNR
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Multifaceted Roles of CXCL9 Within the Tumor Microenvironment.
    Neo SY; Lundqvist A
    Adv Exp Med Biol; 2020; 1231():45-51. PubMed ID: 32060845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor promoting capacity of polymorphonuclear myeloid-derived suppressor cells and their neutralization.
    Groth C; Weber R; Lasser S; Özbay FG; Kurzay A; Petrova V; Altevogt P; Utikal J; Umansky V
    Int J Cancer; 2021 Nov; 149(9):1628-1638. PubMed ID: 34224592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses.
    Hossain F; Majumder S; Ucar DA; Rodriguez PC; Golde TE; Minter LM; Osborne BA; Miele L
    Front Immunol; 2018; 9():1288. PubMed ID: 29915603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor cells educate mesenchymal stromal cells to release chemoprotective and immunomodulatory factors.
    Le Naour A; Prat M; Thibault B; Mével R; Lemaitre L; Leray H; Joubert MV; Coulson K; Golzio M; Lefevre L; Mery E; Martinez A; Ferron G; Delord JP; Coste A; Couderc B
    J Mol Cell Biol; 2020 Apr; 12(3):202-215. PubMed ID: 31504643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifaceted role of chemokines in solid tumors: From biology to therapy.
    Raza S; Rajak S; Tewari A; Gupta P; Chattopadhyay N; Sinha RA; Chakravarti B
    Semin Cancer Biol; 2022 Nov; 86(Pt 3):1105-1121. PubMed ID: 34979274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long Non-Coding RNAs in the Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential.
    Pi YN; Qi WC; Xia BR; Lou G; Jin WL
    Front Immunol; 2021; 12():697083. PubMed ID: 34295338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy.
    Kamran N; Chandran M; Lowenstein PR; Castro MG
    Clin Immunol; 2018 Apr; 189():34-42. PubMed ID: 27777083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic prospects of targeting myeloid-derived suppressor cells and immune checkpoints in cancer.
    Toor SM; Elkord E
    Immunol Cell Biol; 2018 Oct; 96(9):888-897. PubMed ID: 29635843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining epigenetic and immune therapy to overcome cancer resistance.
    Gomez S; Tabernacki T; Kobyra J; Roberts P; Chiappinelli KB
    Semin Cancer Biol; 2020 Oct; 65():99-113. PubMed ID: 31877341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of CXC group chemokines in lung cancer development and progression.
    Spaks A
    J Thorac Dis; 2017 Apr; 9(Suppl 3):S164-S171. PubMed ID: 28446981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.