These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 3031975)
1. Respirable dust control in grinding gray iron castings. O'Brien D; Baron P; Willeke K Am Ind Hyg Assoc J; 1987 Feb; 48(2):181-7. PubMed ID: 3031975 [TBL] [Abstract][Full Text] [Related]
2. Silica exposure in hand grinding steel castings. O'Brien D; Froehlich PA; Gressel MG; Hall RM; Clark NJ; Bost P; Fischbach T Am Ind Hyg Assoc J; 1992 Jan; 53(1):42-8. PubMed ID: 1317091 [TBL] [Abstract][Full Text] [Related]
3. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal. Collingwood S; Heitbrink WA J Occup Environ Hyg; 2007 Nov; 4(11):875-87. PubMed ID: 17917951 [TBL] [Abstract][Full Text] [Related]
4. Reducing silica and dust exposures in construction during use of powered concrete-cutting hand tools: efficacy of local exhaust ventilation on hammer drills. Shepherd S; Woskie SR; Holcroft C; Ellenbecker M J Occup Environ Hyg; 2009 Jan; 6(1):42-51. PubMed ID: 19005968 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of dust control methods for crystalline silica and respirable suspended particulate matter exposure during manual concrete surface grinding. Akbar-Khanzadeh F; Milz SA; Wagner CD; Bisesi MS; Ames AL; Khuder S; Susi P; Akbar-Khanzadeh M J Occup Environ Hyg; 2010 Dec; 7(12):700-11. PubMed ID: 21058155 [TBL] [Abstract][Full Text] [Related]
6. Crystalline silica dust and respirable particulate matter during indoor concrete grinding - wet grinding and ventilated grinding compared with uncontrolled conventional grinding. Akbar-Khanzadeh F; Milz S; Ames A; Susi PP; Bisesi M; Khuder SA; Akbar-Khanzadeh M J Occup Environ Hyg; 2007 Oct; 4(10):770-9. PubMed ID: 17763068 [TBL] [Abstract][Full Text] [Related]
7. A numerical and experimental investigation of crystalline silica exposure control during tuck pointing. Heitbrink W; Bennett J J Occup Environ Hyg; 2006 Jul; 3(7):366-78. PubMed ID: 16835163 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of on-tool shrouds for controlling respirable crystalline silica in restoration stone work. Healy CB; Coggins MA; Van Tongeren M; MacCalman L; McGowan P Ann Occup Hyg; 2014 Nov; 58(9):1155-67. PubMed ID: 25261456 [TBL] [Abstract][Full Text] [Related]
9. Laboratory evaluation to reduce respirable crystalline silica dust when cutting concrete roofing tiles using a masonry saw. Carlo RV; Sheehy J; Feng HA; Sieber WK J Occup Environ Hyg; 2010 Apr; 7(4):245-51. PubMed ID: 20169490 [TBL] [Abstract][Full Text] [Related]
10. Efficiency of a tool-mounted local exhaust ventilation system for controlling dust exposure during metal grinding operations. Ojima J Ind Health; 2007 Dec; 45(6):817-9. PubMed ID: 18212477 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of misting controls to reduce respirable silica exposure for brick cutting. Beamer BR; Shulman S; Maynard A; Williams D; Watkins D Ann Occup Hyg; 2005 Aug; 49(6):503-10. PubMed ID: 15845608 [TBL] [Abstract][Full Text] [Related]
12. The efficacy of local exhaust ventilation for controlling dust exposures during concrete surface grinding. Croteau GA; Flanagan ME; Camp JE; Seixas NS Ann Occup Hyg; 2004 Aug; 48(6):509-18. PubMed ID: 15298850 [TBL] [Abstract][Full Text] [Related]
13. [Reduction of dust during manual grinding of cast iron]. GliĆski M Med Pr; 2002; 53(1):89-93. PubMed ID: 12051159 [TBL] [Abstract][Full Text] [Related]
14. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash. Hicks J; Yager J J Occup Environ Hyg; 2006 Aug; 3(8):448-55. PubMed ID: 16862716 [TBL] [Abstract][Full Text] [Related]
15. Estimating historical respirable crystalline silica exposures for Chinese pottery workers and iron/copper, tin, and tungsten miners. Zhuang Z; Hearl FJ; Odencrantz J; Chen W; Chen BT; Chen JQ; McCawley MA; Gao P; Soderholm SC Ann Occup Hyg; 2001 Nov; 45(8):631-42. PubMed ID: 11718659 [TBL] [Abstract][Full Text] [Related]
16. Size and concentration measurement of an industrial aerosol. O'Brien D; Baron P; Willeke K Am Ind Hyg Assoc J; 1986 Jul; 47(7):386-92. PubMed ID: 3751888 [TBL] [Abstract][Full Text] [Related]
17. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal. Beckett WS; Lyons J J Occup Environ Hyg; 2007 Nov; 4(11):D120-1. PubMed ID: 17885909 [No Abstract] [Full Text] [Related]
18. Increased micronucleus frequencies in surrogate and target cells from workers exposed to crystalline silica-containing dust. Demircigil GC; Coskun E; Vidinli N; Erbay Y; Yilmaz M; Cimrin A; Schins RP; Borm PJ; Burgaz S Mutagenesis; 2010 Mar; 25(2):163-9. PubMed ID: 19939883 [TBL] [Abstract][Full Text] [Related]
19. Control of respirable dust and crystalline silica from breaking concrete with a jackhammer. Echt A; Sieber K; Jones E; Schill D; Lefkowitz D; Sugar J; Hoffner K Appl Occup Environ Hyg; 2003 Jul; 18(7):491-5. PubMed ID: 12791543 [No Abstract] [Full Text] [Related]
20. Engineering controls for selected silica and dust exposures in the construction industry--a review. Flynn MR; Susi P Appl Occup Environ Hyg; 2003 Apr; 18(4):268-77. PubMed ID: 12637237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]