BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30319779)

  • 1. Nanoscale 3D printing of hydrogels for cellular tissue engineering.
    You S; Li J; Zhu W; Yu C; Mei D; Chen S
    J Mater Chem B; 2018 Apr; 6(15):2187-2197. PubMed ID: 30319779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Simple to Architecturally Complex Hydrogel Scaffolds for Cell and Tissue Engineering Applications: Opportunities Presented by Two-Photon Polymerization.
    Song J; Michas C; Chen CS; White AE; Grinstaff MW
    Adv Healthc Mater; 2020 Jan; 9(1):e1901217. PubMed ID: 31746140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond-Laser-Based 3D Printing for Tissue Engineering and Cell Biology Applications.
    Ho CMB; Mishra A; Hu K; An J; Kim YJ; Yoon YJ
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2198-2214. PubMed ID: 33445279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyaluronic acid based materials for scaffolding via two-photon polymerization.
    Kufelt O; El-Tamer A; Sehring C; Schlie-Wolter S; Chichkov BN
    Biomacromolecules; 2014 Feb; 15(2):650-9. PubMed ID: 24432740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon techniques in tissue engineering.
    Schade R; Weiss T; Berg A; Schnabelrauch M; Liefeith K
    Int J Artif Organs; 2010 Apr; 33(4):219-27. PubMed ID: 20458691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Photon Polymerized Poly(2-Ethyl-2-Oxazoline) Hydrogel 3D Microstructures with Tunable Mechanical Properties for Tissue Engineering.
    Czich S; Wloka T; Rothe H; Rost J; Penzold F; Kleinsteuber M; Gottschaldt M; Schubert US; Liefeith K
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33142860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser printing of cells into 3D scaffolds.
    Ovsianikov A; Gruene M; Pflaum M; Koch L; Maiorana F; Wilhelmi M; Haverich A; Chichkov B
    Biofabrication; 2010 Mar; 2(1):014104. PubMed ID: 20811119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels.
    Lewis PL; Yan M; Su J; Shah RN
    Acta Biomater; 2019 Feb; 85():84-93. PubMed ID: 30590182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.
    Xing JF; Zheng ML; Duan XM
    Chem Soc Rev; 2015 Aug; 44(15):5031-9. PubMed ID: 25992492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Hybrid-Hydrogel Materials for Tissue Engineering: a Critical Review.
    Tajik S; Garcia CN; Gillooley S; Tayebi L
    Regen Eng Transl Med; 2023 Mar; 9(1):29-41. PubMed ID: 37193257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering.
    You F; Wu X; Zhu N; Lei M; Eames BF; Chen X
    ACS Biomater Sci Eng; 2016 Jul; 2(7):1200-1210. PubMed ID: 33465878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser photofabrication of cell-containing hydrogel constructs.
    Ovsianikov A; Mühleder S; Torgersen J; Li Z; Qin XH; Van Vlierberghe S; Dubruel P; Holnthoner W; Redl H; Liska R; Stampfl J
    Langmuir; 2014 Apr; 30(13):3787-94. PubMed ID: 24033187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability.
    Wang L; Xu ME; Luo L; Zhou Y; Si P
    Sci Rep; 2018 Feb; 8(1):2802. PubMed ID: 29434327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering hydrogels as extracellular matrix mimics.
    Geckil H; Xu F; Zhang X; Moon S; Demirci U
    Nanomedicine (Lond); 2010 Apr; 5(3):469-84. PubMed ID: 20394538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-Maturation Reinforcement of 3D-Printed Vascularized Cardiac Tissues.
    Silberman E; Oved H; Namestnikov M; Shapira A; Dvir T
    Adv Mater; 2023 Aug; 35(31):e2302229. PubMed ID: 37093760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.
    Brigo L; Urciuolo A; Giulitti S; Della Giustina G; Tromayer M; Liska R; Elvassore N; Brusatin G
    Acta Biomater; 2017 Jun; 55():373-384. PubMed ID: 28351679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Stem Cell Niche Engineering via Two-Photon Laser Polymerization.
    Nava MM; Zandrini T; Cerullo G; Osellame R; Raimondi MT
    Methods Mol Biol; 2017; 1612():253-266. PubMed ID: 28634949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.
    Curley JL; Jennings SR; Moore MJ
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21372777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.