These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30319883)

  • 1. Driving Surface Redox Reactions in Heterogeneous Photocatalysis: The Active State of Illuminated Semiconductor-Supported Nanoparticles during Overall Water-Splitting.
    Mei B; Han K; Mul G
    ACS Catal; 2018 Oct; 8(10):9154-9164. PubMed ID: 30319883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Induced Synthesis of Heterojunctioned Nanoparticles on a Semiconductor as Durable Cocatalysts for Hydrogen Evolution.
    Kanazawa T; Maeda K
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7165-72. PubMed ID: 26928532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production.
    Yang J; Yan H; Zong X; Wen F; Liu M; Li C
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110430. PubMed ID: 23816907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light.
    Maeda K; Sakamoto N; Ikeda T; Ohtsuka H; Xiong A; Lu D; Kanehara M; Teranishi T; Domen K
    Chemistry; 2010 Jul; 16(26):7750-9. PubMed ID: 20564294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting photocatalytic overall water splitting by Co doping into Mn
    Yoshinaga T; Saruyama M; Xiong A; Ham Y; Kuang Y; Niishiro R; Akiyama S; Sakamoto M; Hisatomi T; Domen K; Teranishi T
    Nanoscale; 2018 Jun; 10(22):10420-10427. PubMed ID: 29616267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-Based Materials as Efficient Photocatalysts for Water Splitting.
    Albero J; Mateo D; García H
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30841539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-Shell Cocatalysts.
    Bai S; Yang L; Wang C; Lin Y; Lu J; Jiang J; Xiong Y
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14810-4. PubMed ID: 26463828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface engineering of a CoO(x)/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation.
    Chen S; Shen S; Liu G; Qi Y; Zhang F; Li C
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):3047-51. PubMed ID: 25611198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cocatalyst that Stabilizes a Hydride Intermediate during Photocatalytic Hydrogen Evolution over a Rhodium-Doped TiO
    Ida S; Sato K; Nagata T; Hagiwara H; Watanabe M; Kim N; Shiota Y; Koinuma M; Takenaka S; Sakai T; Ertekin E; Ishihara T
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):9073-9077. PubMed ID: 29766627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disordered-Layer-Mediated Reverse Metal-Oxide Interactions for Enhanced Photocatalytic Water Splitting.
    Cho Y; Park B; Padhi DK; Ibrahim IAM; Kim S; Kim KH; Lee KS; Lee CL; Han JW; Oh SH; Park JH
    Nano Lett; 2021 Jun; 21(12):5247-5253. PubMed ID: 34100618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Active Pt
    Yao J; Zheng Y; Jia X; Duan L; Wu Q; Huang C; An W; Xu Q; Yao W
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25844-25853. PubMed ID: 31241300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Platinum Cocatalyst Loaded on Calcium Titanate Photocatalyst for Water Splitting in a Flow of Water Vapor.
    Yoshida H; Yamada R; Yoshida T
    ChemSusChem; 2019 May; 12(9):1958-1965. PubMed ID: 30803147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoting Photocatalytic Overall Water Splitting by Controlled Magnesium Incorporation in SrTiO
    Han K; Lin YC; Yang CM; Jong R; Mul G; Mei B
    ChemSusChem; 2017 Nov; 10(22):4510-4516. PubMed ID: 29072368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.