These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30319913)

  • 21. Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging.
    Ughi GJ; Wang H; Gerbaud E; Gardecki JA; Fard AM; Hamidi E; Vacas-Jacques P; Rosenberg M; Jaffer FA; Tearney GJ
    JACC Cardiovasc Imaging; 2016 Nov; 9(11):1304-1314. PubMed ID: 26971006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fibroatheroma identification in Intravascular Optical Coherence Tomography images using deep features.
    Mengdi Xu ; Jun Cheng ; Annan Li ; Lee JA; Wong DWK; Taruya A; Tanaka A; Foin N; Wong P
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1501-1504. PubMed ID: 29060164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis.
    Li BH; Leung AS; Soong A; Munding CE; Lee H; Thind AS; Munce NR; Wright GA; Rowsell CH; Yang VX; Strauss BH; Foster FS; Courtney BK
    Catheter Cardiovasc Interv; 2013 Feb; 81(3):494-507. PubMed ID: 22566368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
    Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J
    Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning for quality assessment of retinal OCT images.
    Wang J; Deng G; Li W; Chen Y; Gao F; Liu H; He Y; Shi G
    Biomed Opt Express; 2019 Dec; 10(12):6057-6072. PubMed ID: 31853385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study.
    Betancur J; Hu LH; Commandeur F; Sharir T; Einstein AJ; Fish MB; Ruddy TD; Kaufmann PA; Sinusas AJ; Miller EJ; Bateman TM; Dorbala S; Di Carli M; Germano G; Otaki Y; Liang JX; Tamarappoo BK; Dey D; Berman DS; Slomka PJ
    J Nucl Med; 2019 May; 60(5):664-670. PubMed ID: 30262516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks.
    Pfister M; Schützenberger K; Pfeiffenberger U; Messner A; Chen Z; Dos Santos VA; Puchner S; Garhöfer G; Schmetterer L; Gröschl M; Werkmeister RM
    Biomed Opt Express; 2019 Mar; 10(3):1315-1328. PubMed ID: 30891348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Illusion or reality? How 3-dimensional optical coherence tomography overcomes the limitations of angiography: OCT-guided percutaneous coronary intervention of left main stem disease involving LAD/LCx bifurcation.
    Yamaç AH
    Turk Kardiyol Dern Ars; 2019 Jul; 47(5):406-409. PubMed ID: 31311899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading.
    Celi S; Berti S
    Med Image Anal; 2014 Oct; 18(7):1157-68. PubMed ID: 25077844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis.
    Zreik M; Lessmann N; van Hamersvelt RW; Wolterink JM; Voskuil M; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2018 Feb; 44():72-85. PubMed ID: 29197253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contour segmentation of the intima, media, and adventitia layers in intracoronary OCT images: application to fully automatic detection of healthy wall regions.
    Zahnd G; Hoogendoorn A; Combaret N; Karanasos A; Péry E; Sarry L; Motreff P; Niessen W; Regar E; van Soest G; Gijsen F; van Walsum T
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1923-1936. PubMed ID: 28801817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images.
    Fu H; Baskaran M; Xu Y; Lin S; Wong DWK; Liu J; Tun TA; Mahesh M; Perera SA; Aung T
    Am J Ophthalmol; 2019 Jul; 203():37-45. PubMed ID: 30849350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility of optical coherence tomography in children with Kawasaki disease and pediatric heart transplant recipients.
    Harris KC; Manouzi A; Fung AY; De Souza A; Bezerra HG; Potts JE; Hosking MC
    Circ Cardiovasc Imaging; 2014 Jul; 7(4):671-8. PubMed ID: 24874056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single fiber OCT imager for breast tissue classification based on deep learning.
    Liu Y; Hubbi B; Liu X
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11233():. PubMed ID: 32665745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accuracy of a deep convolutional neural network in the detection of myopic macular diseases using swept-source optical coherence tomography.
    Sogawa T; Tabuchi H; Nagasato D; Masumoto H; Ikuno Y; Ohsugi H; Ishitobi N; Mitamura Y
    PLoS One; 2020; 15(4):e0227240. PubMed ID: 32298265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical Coherence Tomography for the Early Detection of Coronary Vascular Changes in Children and Adolescents After Cardiac Transplantation: Findings From the International Pediatric OCT Registry.
    McGovern E; Hosking MCK; Balbacid E; Voss C; Berger F; Schubert S; Harris KC
    JACC Cardiovasc Imaging; 2019 Dec; 12(12):2492-2501. PubMed ID: 30031706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.