These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30320247)

  • 1. Quantification of Oxygen Nanobubbles in Particulate Matters and Potential Applications in Remediation of Anaerobic Environment.
    Wang L; Miao X; Ali J; Lyu T; Pan G
    ACS Omega; 2018 Sep; 3(9):10624-10630. PubMed ID: 30320247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanobubbles at Hydrophilic Particle-Water Interfaces.
    Pan G; He G; Zhang M; Zhou Q; Tyliszczak T; Tai R; Guo J; Bi L; Wang L; Zhang H
    Langmuir; 2016 Nov; 32(43):11133-11137. PubMed ID: 27180638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-Induced Interfacial Nanobubbles.
    Wang L; Miao X; Pan G
    Langmuir; 2016 Nov; 32(43):11147-11154. PubMed ID: 27238206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters.
    Ji X; Liu C; Pan G
    Ecotoxicol Environ Saf; 2020 Jan; 188():109888. PubMed ID: 31706242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia Remediation and Methane Emission Manipulation Using Surface Oxygen Nanobubbles.
    Shi W; Pan G; Chen Q; Song L; Zhu L; Ji X
    Environ Sci Technol; 2018 Aug; 52(15):8712-8717. PubMed ID: 30001132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable modulation of anaerobic malodorous black water: The interactive effect of oxygen-loaded porous material and submerged macrophyte.
    Liu M; Ran Y; Peng X; Zhu Z; Liang J; Ai H; Li H; He Q
    Water Res; 2019 Sep; 160():70-80. PubMed ID: 31132564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpreting the interfacial and colloidal stability of bulk nanobubbles.
    Nirmalkar N; Pacek AW; Barigou M
    Soft Matter; 2018 Dec; 14(47):9643-9656. PubMed ID: 30457138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combating hypoxia/anoxia at sediment-water interfaces: A preliminary study of oxygen nanobubble modified clay materials.
    Zhang H; Lyu T; Bi L; Tempero G; Hamilton DP; Pan G
    Sci Total Environ; 2018 Oct; 637-638():550-560. PubMed ID: 29754089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of surface modification on interfacial nanobubble morphology and contact line tension.
    Rangharajan KK; Kwak KJ; Conlisk AT; Wu Y; Prakash S
    Soft Matter; 2015 Jul; 11(26):5214-23. PubMed ID: 26041331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress on the Surface Nanobubble Story: What is in the bubble? Why does it exist?
    Peng H; Birkett GR; Nguyen AV
    Adv Colloid Interface Sci; 2015 Aug; 222():573-80. PubMed ID: 25267688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of surface hydrophobicity on the formation and stability of oxygen nanobubbles.
    Pan G; Yang B
    Chemphyschem; 2012 Jun; 13(8):2205-12. PubMed ID: 22271703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophilic Domains Enhance Nanobubble Stability.
    Nishiyama T; Takahashi K; Ikuta T; Yamada Y; Takata Y
    Chemphyschem; 2016 May; 17(10):1500-4. PubMed ID: 26864857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemically reactive colloidal nanobubbles by water splitting.
    Yadav G; Nirmalkar N; Ohl CD
    J Colloid Interface Sci; 2024 Jun; 663():518-531. PubMed ID: 38422977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bulk nanobubbles in the mineral and environmental areas: Updating research and applications.
    Azevedo A; Oliveira H; Rubio J
    Adv Colloid Interface Sci; 2019 Sep; 271():101992. PubMed ID: 31351416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Existence and Stability of Bulk Nanobubbles.
    Nirmalkar N; Pacek AW; Barigou M
    Langmuir; 2018 Sep; 34(37):10964-10973. PubMed ID: 30179016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of nanobubbles on hydrophobic surfaces in water.
    Yang S; Dammer SM; Bremond N; Zandvliet HJ; Kooij ES; Lohse D
    Langmuir; 2007 Jun; 23(13):7072-7. PubMed ID: 17503857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions.
    Zhang XH; Maeda N; Craig VS
    Langmuir; 2006 May; 22(11):5025-35. PubMed ID: 16700590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles.
    Ji X; Liu C; Zhang M; Yin Y; Pan G
    Water Res; 2020 Apr; 173():115563. PubMed ID: 32059129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anoxia remediation and internal loading modulation in eutrophic lakes using geoengineering method based on oxygen nanobubbles.
    Zhang H; Chen J; Han M; An W; Yu J
    Sci Total Environ; 2020 Apr; 714():136766. PubMed ID: 31982760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on Nanobubble-on-Pancake Objects Forming at Polystyrene/Water Interface.
    Li D; Pan Y; Zhao X; Bhushan B
    Langmuir; 2016 Nov; 32(43):11256-11264. PubMed ID: 27391804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.