These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30320276)

  • 1. Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation.
    Pendola M; Jain G; Huang YC; Gebauer D; Evans JS
    ACS Omega; 2018 Sep; 3(9):11823-11830. PubMed ID: 30320276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Model Sea Urchin Spicule Matrix Protein, rSpSM50, Is a Hydrogelator That Modifies and Organizes the Mineralization Process.
    Jain G; Pendola M; Huang YC; Gebauer D; Evans JS
    Biochemistry; 2017 May; 56(21):2663-2675. PubMed ID: 28478667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosylation Fosters Interactions between Model Sea Urchin Spicule Matrix Proteins. Implications for Embryonic Spiculogenesis and Biomineralization.
    Jain G; Pendola M; Koutsoumpeli E; Johnson S; Evans JS
    Biochemistry; 2018 May; 57(21):3032-3035. PubMed ID: 29757633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains.
    Pendola M; Jain G; Evans JS
    PLoS One; 2019; 14(10):e0222068. PubMed ID: 31574084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Model Sea Urchin Spicule Matrix Protein Self-Associates To Form Mineral-Modifying Protein Hydrogels.
    Jain G; Pendola M; Rao A; Cölfen H; Evans JS
    Biochemistry; 2016 Aug; 55(31):4410-21. PubMed ID: 27426695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.
    Politi Y; Metzler RA; Abrecht M; Gilbert B; Wilt FH; Sagi I; Addadi L; Weiner S; Gilbert PU
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17362-6. PubMed ID: 18987314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.
    Rao A; Seto J; Berg JK; Kreft SG; Scheffner M; Cölfen H
    J Struct Biol; 2013 Aug; 183(2):205-15. PubMed ID: 23796503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sea Urchin Spicule Matrix Proteins Form Mesoscale "Smart" Hydrogels That Exhibit Selective Ion Interactions.
    Pendola M; Davidyants A; Jung YS; Evans JS
    ACS Omega; 2017 Sep; 2(9):6151-6158. PubMed ID: 31457861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracrystalline incorporation of nacre protein hydrogels modifies the mechanical properties of calcite crystals: a microcompression study.
    Risan J; Jain G; Pendola M; Evans JS
    J Mater Chem B; 2018 Jul; 6(25):4191-4196. PubMed ID: 32254592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of secretion during sea urchin embryonic skeleton formation.
    Wilt FH; Killian CE; Hamilton P; Croker L
    Exp Cell Res; 2008 May; 314(8):1744-52. PubMed ID: 18355808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transitions in biogenic amorphous calcium carbonate.
    Gong YU; Killian CE; Olson IC; Appathurai NP; Amasino AL; Martin MC; Holt LJ; Wilt FH; Gilbert PU
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6088-93. PubMed ID: 22492931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process.
    Cheng X; Gower LB
    Biotechnol Prog; 2006; 22(1):141-9. PubMed ID: 16454504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. II. Pro,Asn-rich tandem repeats.
    Zhang B; Xu G; Evans JS
    Biopolymers; 2000 Nov; 54(6):464-75. PubMed ID: 10951331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular control over spicule formation in sea urchin embryos: A structural approach.
    Beniash E; Addadi L; Weiner S
    J Struct Biol; 1999 Mar; 125(1):50-62. PubMed ID: 10196116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.
    Mao Y; Satchell PG; Luan X; Diekwisch TG
    Ann Anat; 2016 Jan; 203():38-46. PubMed ID: 26194158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forming amorphous calcium carbonate within hydrogels by enzyme-induced mineralization in the presence of N-(phosphonomethyl)glycine.
    Milovanovic M; Unruh MT; Brandt V; Tiller JC
    J Colloid Interface Sci; 2020 Nov; 579():357-368. PubMed ID: 32615479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pif97, a von Willebrand and Peritrophin Biomineralization Protein, Organizes Mineral Nanoparticles and Creates Intracrystalline Nanochambers.
    Chang EP; Evans JS
    Biochemistry; 2015 Sep; 54(34):5348-55. PubMed ID: 26258941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification.
    Rodríguez-Navarro AB; Marie P; Nys Y; Hincke MT; Gautron J
    J Struct Biol; 2015 Jun; 190(3):291-303. PubMed ID: 25934395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On Biomineralization: Enzymes Switch on Mesocrystal Assembly.
    Rao A; Roncal-Herrero T; Schmid E; Drechsler M; Scheffner M; Gebauer D; Kröger R; Cölfen H
    ACS Cent Sci; 2019 Feb; 5(2):357-364. PubMed ID: 30834324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and regrowth of adult sea urchin spines involve hydrated and anhydrous amorphous calcium carbonate precursors.
    Albéric M; Stifler CA; Zou Z; Sun CY; Killian CE; Valencia S; Mawass MA; Bertinetti L; Gilbert PUPA; Politi Y
    J Struct Biol X; 2019; 1():100004. PubMed ID: 32647811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.