These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30320301)

  • 1. Surface Structuring and Water Interactions of Nanocellulose Filaments Modified with Organosilanes toward Wearable Materials.
    Cunha AG; Lundahl M; Ansari MF; Johansson LS; Campbell JM; Rojas OJ
    ACS Appl Nano Mater; 2018 Sep; 1(9):5279-5288. PubMed ID: 30320301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels.
    Lundahl MJ; Cunha AG; Rojo E; Papageorgiou AC; Rautkari L; Arboleda JC; Rojas OJ
    Sci Rep; 2016 Jul; 6():30695. PubMed ID: 27465828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning.
    Lundahl MJ; Klar V; Ajdary R; Norberg N; Ago M; Cunha AG; Rojas OJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27287-27296. PubMed ID: 30014693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions.
    Park CW; Park JS; Han SY; Lee EA; Kwon GJ; Seo YH; Gwon JG; Lee SY; Lee SH
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions.
    Mao H; Niu P; Zhang Z; Kong Y; Wang WJ; Yang X
    Carbohydr Polym; 2023 Aug; 313():120881. PubMed ID: 37182934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filaments with Affinity Binding and Wet Strength Can Be Achieved by Spinning Bifunctional Cellulose Nanofibrils.
    Vuoriluoto M; Orelma H; Lundahl M; Borghei M; Rojas OJ
    Biomacromolecules; 2017 Jun; 18(6):1803-1813. PubMed ID: 28436646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional Wet-Spun Filaments through Robust Nanocellulose Networks Wrapping to Single-Walled Carbon Nanotubes.
    Wan Z; Chen C; Meng T; Mojtaba M; Teng Y; Feng Q; Li D
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42808-42817. PubMed ID: 31625715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Acetylation of Plant Fibers into Micro- and Nanocelluloses for the Synthesis of Highly Stretchable, Tough, and Water-Resistant Co-continuous Filaments via Wet-Spinning.
    Tripathi A; Ago M; Khan SA; Rojas OJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44776-44786. PubMed ID: 30484313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic-Inorganic Hybrid Planarization and Water Vapor Barrier Coatings on Cellulose Nanofibrils Substrates.
    Karasu F; Müller L; Ridaoui H; Ibn ElHaj M; Flodberg G; Aulin C; Axrup L; Leterrier Y
    Front Chem; 2018; 6():571. PubMed ID: 30525026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate.
    Park JS; Park CW; Han SY; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Yoo WJ; Gwon JY; Lee SH
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties.
    Ghasemi S; Tajvidi M; Bousfield DW; Gardner DJ; Gramlich WM
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Assembly of Nanocellulose into Filaments by Flow-Assisted Alignment and Interfacial Complexation: Conquering the Conflicts between Strength and Toughness.
    Cai Y; Geng L; Chen S; Shi S; Hsiao BS; Peng X
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32090-32098. PubMed ID: 32551523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of non-solvents and electrolytes on the formation and properties of cellulose I filaments.
    Wang L; Lundahl MJ; Greca LG; Papageorgiou AC; Borghei M; Rojas OJ
    Sci Rep; 2019 Nov; 9(1):16691. PubMed ID: 31723231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose-Based Hollow Fibers for Advanced Water and Moisture Management.
    Niu P; Mao H; Lim KH; Wang Q; Wang WJ; Yang X
    ACS Nano; 2023 Aug; 17(15):14686-14694. PubMed ID: 37459214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow Filaments from Coaxial Dry-Jet Wet Spinning of a Cellulose Solution in an Ionic Liquid: Wet-Strength and Water Interactions.
    Zhang S; Reyes G; Khakalo A; Rojas OJ
    Biomacromolecules; 2024 Jan; 25(1):282-289. PubMed ID: 38086070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying.
    Cervin NT; Johansson E; Larsson PA; Wågberg L
    ACS Appl Mater Interfaces; 2016 May; 8(18):11682-9. PubMed ID: 27070532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings.
    Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J
    Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus.
    Guo X; Wu Y; Xie X
    Sci Rep; 2017 Oct; 7(1):14207. PubMed ID: 29079849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue.
    Hooshmand S; Aitomäki Y; Norberg N; Mathew AP; Oksman K
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13022-8. PubMed ID: 26017287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual Counterion Systems of Carboxylated Nanocellulose Films with Tunable Mechanical, Hydrophilic, and Gas-Barrier Properties.
    Kubo R; Saito T; Isogai A
    Biomacromolecules; 2019 Apr; 20(4):1691-1698. PubMed ID: 30802032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.