BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30320423)

  • 1. Electrical stimulation disrupts biofilms in a human wound model and reveals the potential for monitoring treatment response with volatile biomarkers.
    Ashrafi M; Novak-Frazer L; Morris J; Baguneid M; Rautemaa-Richardson R; Bayat A
    Wound Repair Regen; 2019 Jan; 27(1):5-18. PubMed ID: 30320423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures.
    Ashrafi M; Novak-Frazer L; Bates M; Baguneid M; Alonso-Rasgado T; Xia G; Rautemaa-Richardson R; Bayat A
    Sci Rep; 2018 Jun; 8(1):9431. PubMed ID: 29930327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interplay of Pseudomonas aeruginosa and Staphylococcus aureus in dual-species biofilms impacts development, antibiotic resistance and virulence of biofilms in in vitro wound infection models.
    Vestweber PK; Wächter J; Planz V; Jung N; Windbergs M
    PLoS One; 2024; 19(5):e0304491. PubMed ID: 38805522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms.
    Yang Q; Phillips PL; Sampson EM; Progulske-Fox A; Jin S; Antonelli P; Schultz GS
    Wound Repair Regen; 2013; 21(5):704-14. PubMed ID: 23927831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo.
    Fitzgerald DJ; Renick PJ; Forrest EC; Tetens SP; Earnest DN; McMillan J; Kiedaisch BM; Shi L; Roche ED
    Wound Repair Regen; 2017 Jan; 25(1):13-24. PubMed ID: 27859922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of a novel, antimicrobial dressing on in vivo, Pseudomonas aeruginosa wound biofilm: quantitative comparative analysis using a rabbit ear model.
    Seth AK; Zhong A; Nguyen KT; Hong SJ; Leung KP; Galiano RD; Mustoe TA
    Wound Repair Regen; 2014; 22(6):712-9. PubMed ID: 25230854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel flow-system to establish experimental biofilms for modelling chronic wound infection and testing the efficacy of wound dressings.
    Duckworth PF; Rowlands RS; Barbour ME; Maddocks SE
    Microbiol Res; 2018 Oct; 215():141-147. PubMed ID: 30172300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of Staphylococcus aureus on the antibiotic resistance and pathogenicity of Pseudomonas aeruginosa based on crc gene as a metabolism regulator: An in vitro wound model study.
    Dehbashi S; Pourmand MR; Alikhani MY; Asl SS; Arabestani MR
    Infect Genet Evol; 2020 Nov; 85():104509. PubMed ID: 32835876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Experimental Ex Vivo Wound Model to Evaluate Antimicrobial Efficacy of Topical Formulations.
    Andersson MÅ; Madsen LB; Schmidtchen A; Puthia M
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34068733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling methicillin resistant Staphyloccocus aureus and Pseudomonas aeruginosa wound infections with a novel biomaterial.
    Martineau L; Davis SC; Peng HT; Hung A
    J Invest Surg; 2007; 20(4):217-27. PubMed ID: 17710602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro collagen perfusion wound biofilm model; with applications for antimicrobial studies and microbial metabolomics.
    Slade EA; Thorn RMS; Young A; Reynolds DM
    BMC Microbiol; 2019 Dec; 19(1):310. PubMed ID: 31888471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of short exposure times of antimicrobial wound solutions against microbial biofilms: from in vitro to in vivo.
    Johani K; Malone M; Jensen SO; Dickson HG; Gosbell IB; Hu H; Yang Q; Schultz G; Vickery K
    J Antimicrob Chemother; 2018 Feb; 73(2):494-502. PubMed ID: 29165561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Amino-4-aminoximidofurazan derivatives: small molecules possessing antimicrobial and antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa.
    Das MC; Paul S; Gupta P; Tribedi P; Sarkar S; Manna D; Bhattacharjee S
    J Appl Microbiol; 2016 Apr; 120(4):842-59. PubMed ID: 26785169
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Yadav MK; Chae SW; Go YY; Im GJ; Song JJ
    Front Cell Infect Microbiol; 2017; 7():125. PubMed ID: 28459043
    [No Abstract]   [Full Text] [Related]  

  • 15. Activity of a nitric oxide-generating wound treatment system against wound pathogen biofilms.
    Waite RD; Stewart JE; Stephen AS; Allaker RP
    Int J Antimicrob Agents; 2018 Sep; 52(3):338-343. PubMed ID: 29665443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of volatile metabolites from in vitro biofilms of Pseudomonas aeruginosa with thin-film microextraction by thermal desorption gas chromatography-mass spectrometry.
    Koehler T; Ackermann I; Brecht D; Uteschil F; Wingender J; Telgheder U; Schmitz OJ
    Anal Bioanal Chem; 2020 May; 412(12):2881-2892. PubMed ID: 32198528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative pressure wound therapy reduces the motility of Pseudomonas aeruginosa and enhances wound healing in a rabbit ear biofilm infection model.
    Guoqi W; Zhirui L; Song W; Tongtong L; Lihai Z; Licheng Z; Peifu T
    Antonie Van Leeuwenhoek; 2018 Sep; 111(9):1557-1570. PubMed ID: 29468490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of a Topical Wound Agent Methanesulfonic Acid and Dimethylsulfoxide on In Vitro Biofilms.
    Schwarzer S; Radzieta M; Jensen SO; Malone M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel in vitro flat-bed perfusion biofilm model for determining the potential antimicrobial efficacy of topical wound treatments.
    Thorn RM; Greenman J
    J Appl Microbiol; 2009 Dec; 107(6):2070-9. PubMed ID: 19548886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.
    van der Plas MJ; Jukema GN; Wai SW; Dogterom-Ballering HC; Lagendijk EL; van Gulpen C; van Dissel JT; Bloemberg GV; Nibbering PH
    J Antimicrob Chemother; 2008 Jan; 61(1):117-22. PubMed ID: 17965032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.