BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30320473)

  • 1. Interactive thermal tissue reactions of 7-MHz intense focused ultrasound and 1-MHz and 6-MHz radiofrequency on cadaveric skin.
    Kim H; Ahn KJ; Lee S; Park H; Cho SB
    Skin Res Technol; 2019 Mar; 25(2):171-178. PubMed ID: 30320473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphometric analysis of high-intensity focused ultrasound-induced lipolysis on cadaveric abdominal and thigh skin.
    Lee S; Kim HJ; Park HJ; Kim HM; Lee SH; Cho SB
    Lasers Med Sci; 2017 Jul; 32(5):1143-1151. PubMed ID: 28451817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue-mimicking phantom and cadaveric skin.
    Kim HJ; Kim HG; Zheng Z; Park HJ; Yoon JH; Oh W; Lee CW; Cho SB
    Lasers Med Sci; 2015 Dec; 30(9):2251-8. PubMed ID: 26341380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot clinical study of a novel minimally invasive bipolar microneedle radiofrequency device.
    Hantash BM; Renton B; Berkowitz RL; Stridde BC; Newman J
    Lasers Surg Med; 2009 Feb; 41(2):87-95. PubMed ID: 19226570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal effects of percutaneous application of plasma/radiofrequency energy on porcine dermis and fibroseptal network.
    Ruff PG
    J Cosmet Dermatol; 2021 Jul; 20(7):2125-2131. PubMed ID: 33197275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic Initiation and Propagation of Bipolar Radiofrequency Tissue Reactions via Invasive Non-Insulated Microneedle Electrodes.
    Na J; Zheng Z; Dannaker C; Lee SE; Kang JS; Cho SB
    Sci Rep; 2015 Nov; 5():16735. PubMed ID: 26563971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Parallel Contact Cooling on Pulsed-Type, Bipolar Radiofrequency-Induced Tissue Reactions in an in vivo Porcine Model.
    Cho SB; Lee YJ; Kang SY; Choi M; Kim B; Ahn JC
    Clin Cosmet Investig Dermatol; 2024; 17():125-135. PubMed ID: 38259431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immediate and Late Effects of Pulse Widths and Cycles on Bipolar, Gated Radiofrequency-Induced Tissue Reactions in in vivo Rat Skin.
    Kim HK; Kim HJ; Kim JY; Ban MJ; Son J; Hwang Y; Cho SB
    Clin Cosmet Investig Dermatol; 2023; 16():721-729. PubMed ID: 37008192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin.
    Suh DH; Choi JH; Lee SJ; Jeong KH; Song KY; Shin MK
    J Cosmet Laser Ther; 2015; 17(5):230-6. PubMed ID: 25723905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflammatory effect of monopolar radiofrequency treatment on collagen fibrils in rabbit skins.
    Choi S; Cheong Y; Shin JH; Jin KH; Park HK
    J Biomed Nanotechnol; 2013 Aug; 9(8):1403-7. PubMed ID: 23926808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of electrocoagulation and thermal diffusion following radiofrequency microneedling using an in vivo porcine skin model.
    Wootten S; Zawacki ZE; Rheins L; Meschter C; Draelos ZD
    J Cosmet Dermatol; 2021 Apr; 20(4):1133-1139. PubMed ID: 32846042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents.
    Bove T; Zawada T; Serup J; Jessen A; Poli M
    Skin Res Technol; 2019 Mar; 25(2):217-228. PubMed ID: 30620418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microneedle fractional radiofrequency-induced micropores evaluated by in vivo reflectance confocal microscopy, optical coherence tomography, and histology.
    Hansen FS; Wenande E; Haedersdal M; Fuchs CSK
    Skin Res Technol; 2019 Jul; 25(4):482-488. PubMed ID: 30659657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Pulse Widths and Cycles on Invasive, Bipolar, and Gated Radiofrequency-Induced Thermal Reactions in ex vivo Bovine Liver Tissue.
    Choi M; Lee HS; Cho SB
    Clin Cosmet Investig Dermatol; 2023; 16():87-97. PubMed ID: 36660189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of controlled volumetric tissue heating with radiofrequency on cellulite and the subcutaneous tissue of the buttocks and thighs.
    Emilia del Pino M; Rosado RH; Azuela A; Graciela Guzmán M; Argüelles D; Rodríguez C; Rosado GM
    J Drugs Dermatol; 2006 Sep; 5(8):714-22. PubMed ID: 16989185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the Dermis Thickness on the Results of the Skin Treatment with Monopolar and Bipolar Radiofrequency Currents.
    Kruglikov IL
    Biomed Res Int; 2016; 2016():1953203. PubMed ID: 27493952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study.
    González-Suárez A; Gutierrez-Herrera E; Berjano E; Jimenez Lozano JN; Franco W
    Lasers Surg Med; 2015 Feb; 47(2):183-95. PubMed ID: 25651998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo histological evaluation of non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode.
    Harth Y; Frank I
    J Drugs Dermatol; 2013 Dec; 12(12):1430-3. PubMed ID: 24301245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histometric analysis of skin-radiofrequency interaction using a fractionated microneedle delivery system.
    Zheng Z; Goo B; Kim DY; Kang JS; Cho SB
    Dermatol Surg; 2014 Feb; 40(2):134-41. PubMed ID: 24373135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical evaluation of simultaneously applied monopolar radiofrequency and targeted pressure energy as a new method for noninvasive treatment of cellulite in postpubertal women.
    Fritz K; Salavastru C; Gyurova M
    J Cosmet Dermatol; 2018 Jun; 17(3):361-364. PubMed ID: 29524305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.