These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 30320783)

  • 1. Deep line-temporal focusing with high axial resolution and a large field-of-view using intracavity control and incoherent pulse shaping.
    Lou K; Wang B; Jee AY; Granick S; Amblard F
    Opt Lett; 2018 Oct; 43(20):4919-4922. PubMed ID: 30320783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-NA two-photon single cell imaging with remote focusing using a diffractive tunable lens.
    May MA; Bawart M; Langeslag M; Bernet S; Kress M; Ritsch-Marte M; Jesacher A
    Biomed Opt Express; 2020 Dec; 11(12):7183-7191. PubMed ID: 33408989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy.
    Durst ME; Zhu G; Xu C
    Opt Commun; 2008 Apr; 281(7):1796-1805. PubMed ID: 18496597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing axial resolution and background rejection in line-scanning temporal focusing microscopy by focal modulation.
    Zhang Y; Kong L; Xie H; Han X; Dai Q
    Opt Express; 2018 Aug; 26(17):21518-21526. PubMed ID: 30130858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device.
    Park JK; Rowlands CJ; So PTC
    Micromachines (Basel); 2017; 8(3):. PubMed ID: 29387484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short coherence length produced by a spatial incoherent source applied for the Linnik-type interferometer.
    Zeylikovich I
    Appl Opt; 2008 Apr; 47(12):2171-7. PubMed ID: 18425192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond micromachining in transparent bulk materials using an anamorphic lens.
    Desautels GL; Brewer CD; Walker MA; Juhl SB; Finet MA; Powers PE
    Opt Express; 2007 Oct; 15(20):13139-48. PubMed ID: 19550582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal focusing multiphoton microscopy with optimized parallel multiline scanning for fast biotissue imaging.
    Chang CY; Lin CY; Hu YY; Tsai SF; Hsu FC; Chen SJ
    J Biomed Opt; 2021 Jan; 26(1):. PubMed ID: 33386708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HiLo Based Line Scanning Temporal Focusing Microscopy for High-Speed, Deep Tissue Imaging.
    Shi R; Zhang Y; Zhou T; Kong L
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional spatiotemporal focusing of femtosecond pulses and its applications in microscopy.
    Song Q; Nakamura A; Hirosawa K; Isobe K; Midorikawa K; Kannari F
    Rev Sci Instrum; 2015 Aug; 86(8):083701. PubMed ID: 26329197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-brightness X-ray free-electron laser with an optical undulator by pulse shaping.
    Chang C; Liang J; Hei D; Becker MF; Tang K; Feng Y; Yakimenko V; Pellegrini C; Wu J
    Opt Express; 2013 Dec; 21(26):32013-8. PubMed ID: 24514796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous spatial and temporal focusing of femtosecond pulses.
    Zhu G; van Howe J; Durst M; Zipfel W; Xu C
    Opt Express; 2005 Mar; 13(6):2153-9. PubMed ID: 19495103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF).
    Tao X; Lam T; Zhu B; Li Q; Reinig MR; Kubby J
    Opt Express; 2017 May; 25(9):10368-10383. PubMed ID: 28468409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive subwavelength control of nano-optical fields.
    Aeschlimann M; Bauer M; Bayer D; Brixner T; GarcĂ­a de Abajo FJ; Pfeiffer W; Rohmer M; Spindler C; Steeb F
    Nature; 2007 Mar; 446(7133):301-4. PubMed ID: 17361179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional resolution-enhancement divided aperture correlation-differential confocal microscopy with nanometer axial focusing capability.
    Qiu L; Wang Y; Wu H; Sun Y; Cui H; Zhao W; Yuan L; Zhan C
    Opt Express; 2018 Feb; 26(3):2314-2324. PubMed ID: 29401771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattering reduction by structured light illumination in line-scanning temporal focusing microscopy.
    Xue Y; Berry KP; Boivin JR; Wadduwage D; Nedivi E; So PTC
    Biomed Opt Express; 2018 Nov; 9(11):5654-5666. PubMed ID: 30460153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon fluorescence isotropic-single-objective microscopy.
    Le Moal E; Mudry E; Chaumet PC; Ferrand P; Sentenac A
    Opt Lett; 2012 Jan; 37(1):85-7. PubMed ID: 22212799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast 3-D temporal focusing microscopy using an electrically tunable lens.
    Jiang J; Zhang D; Walker S; Gu C; Ke Y; Yung WH; Chen SC
    Opt Express; 2015 Sep; 23(19):24362-8. PubMed ID: 26406641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy.
    Li Z; Hou J; Suo J; Qiao C; Kong L; Dai Q
    Opt Express; 2017 Dec; 25(25):32010-32020. PubMed ID: 29245869
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.