These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30320841)

  • 1. Extending recordable time of light-in-flight recording by holography with double reference light pulses.
    Sawashima Y; Yamanaka D; Takamoto I; Matsunaka A; Awatsuji Y; Nishio K
    Opt Lett; 2018 Oct; 43(20):5146-5149. PubMed ID: 30320841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion picture of magnified light pulse propagation with extending recordable time of digital light-in-flight holography.
    Inoue T; Aoyama T; Sawashima Y; Nishio K; Kubota T; Awatsuji Y
    Appl Opt; 2022 Feb; 61(5):B206-B214. PubMed ID: 35201142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple motion picture recording in light-in-flight recording by holography with an angular multiplexing technique.
    Inoue T; Kakue T; Nishio K; Kubota T; Awatsuji Y
    J Opt Soc Am A Opt Image Sci Vis; 2023 Feb; 40(2):370-377. PubMed ID: 36821206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast double motion-picture recording technique for propagating light pulses with an ultrashort time difference.
    Inoue T; Nagao K; Nishio K; Kubota T; Awatsuji Y
    Opt Lett; 2022 Jul; 47(14):3407-3410. PubMed ID: 35838691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the lateral size of a hologram on the reconstructed image in digital light-in-flight recording by holography.
    Inoue T; Sasaki M; Nishio K; Kubota T; Awatsuji Y
    Appl Opt; 2021 Apr; 60(10):B59-B64. PubMed ID: 33798137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FFT-based simulation of the hologram-recording process for light-in-flight recording by holography.
    Kakue T; Inoue T; Shimobaba T; Ito T; Awatsuji Y
    J Opt Soc Am A Opt Image Sci Vis; 2022 Feb; 39(2):A7-A14. PubMed ID: 35200946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-in-flight recording by holography.
    Abramson N
    Opt Lett; 1978 Oct; 3(4):121-3. PubMed ID: 19684717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion-picture recording of ultrafast behavior of polarized light incident at Brewster's angle.
    Sasaki M; Matsunaka A; Inoue T; Nishio K; Awatsuji Y
    Sci Rep; 2020 May; 10(1):7638. PubMed ID: 32376912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation.
    Kubota T; Komai K; Yamagiwa M; Awatsuji Y
    Opt Express; 2007 Oct; 15(22):14348-54. PubMed ID: 19550711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tilted-pulse time-resolved off-axis digital holography.
    Balcūnas T; Melninkaitis A; Vanagas A; Sirutkaitis V
    Opt Lett; 2009 Sep; 34(18):2715-7. PubMed ID: 19756081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-in-flight recording. 5: Theory of slowing down the faster-than-light motion of the light shutter.
    Abramson N; Pettersson SG; Bergstrom H
    Appl Opt; 1989 Feb; 28(4):759-65. PubMed ID: 20548556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time reconstructions in light-in-flight recording by holography.
    Abramson N
    Appl Opt; 1991 Apr; 30(10):1242-52. PubMed ID: 20582134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single pulse light-in-flight recording by holography.
    Abramson NH; Spears KG
    Appl Opt; 1989 May; 28(10):1834-41. PubMed ID: 20548752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-in-flight recording. 6: Experiment with view-time expansion using a skew reference wave.
    Pettersson SG; Bergstrom H; Abramson N
    Appl Opt; 1989 Feb; 28(4):766-70. PubMed ID: 20548557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of propagating femtosecond light pulse train generated by an integrated array illuminator as a spatially and temporally continuous motion picture.
    Yamagiwa M; Komatsu A; Awatsuji Y; Kubota T
    Opt Express; 2005 May; 13(9):3296-302. PubMed ID: 19495231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional shape recognition using computer-generated holograms and temporal light-in-flight technique.
    Mendlovic D; Avishay N
    Appl Opt; 1995 Oct; 34(29):6621-5. PubMed ID: 21060516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical fiber tested using light-in-flight recording by holography.
    Abramson N
    Appl Opt; 1987 Nov; 26(21):4657-9. PubMed ID: 20523420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Object motion compensation by speckle reference beam holography.
    Waters JP
    Appl Opt; 1972 Mar; 11(3):630-6. PubMed ID: 20111559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recordable depth of view and allowable farthest far-field distance of in-line far-field holography for micro-object analysis.
    Lai T; Lin W
    Appl Opt; 1997 Jul; 36(19):4419-24. PubMed ID: 18259231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulations of holographic spatiospectral traces of spatiotemporally distorted ultrashort laser pulses.
    Guang Z; Rhodes M; Trebino R
    Appl Opt; 2015 Aug; 54(22):6640-51. PubMed ID: 26368075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.