These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30321092)

  • 1. Attentional Facilitation of Constituent Features of an Object Does Not Spread Automatically along Object-defining Cortical Boundaries.
    Brummerloh B; Gundlach C; Müller MM
    J Cogn Neurosci; 2019 Feb; 31(2):278-287. PubMed ID: 30321092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time matters: Feature-specific prioritization follows feature integration in visual object processing.
    Brummerloh B; Müller MM
    Neuroimage; 2019 Aug; 196():81-93. PubMed ID: 30981854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.
    Andersen SK; Müller MM; Hillyard SA
    J Neurosci; 2015 Jul; 35(27):9912-9. PubMed ID: 26156992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel attentional facilitation of features and objects in early visual cortex.
    Adamian N; Andersen SK; Hillyard SA
    Psychophysiology; 2020 Mar; 57(3):e13498. PubMed ID: 31691314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Enhancement but Local Suppression in Feature-based Attention.
    Forschack N; Andersen SK; Müller MM
    J Cogn Neurosci; 2017 Apr; 29(4):619-627. PubMed ID: 27897668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional modulation of neural responses to illusory shapes: Evidence from steady-state and evoked visual potentials.
    Wittenhagen L; Mattingley JB
    Neuropsychologia; 2019 Mar; 125():70-80. PubMed ID: 30711611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attentional enhancement during multiple-object tracking.
    Drew T; McCollough AW; Horowitz TS; Vogel EK
    Psychon Bull Rev; 2009 Apr; 16(2):411-7. PubMed ID: 19293115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.
    Müller MM; Trautmann M; Keitel C
    J Cogn Neurosci; 2016 Apr; 28(4):643-55. PubMed ID: 26696296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive interactions of attentional resources in early visual cortex during sustained visuospatial attention within or between visual hemifields: evidence for the different-hemifield advantage.
    Walter S; Quigley C; Mueller MM
    J Cogn Neurosci; 2014 May; 26(5):938-54. PubMed ID: 24345166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global facilitation of attended features is obligatory and restricts divided attention.
    Andersen SK; Hillyard SA; Müller MM
    J Neurosci; 2013 Nov; 33(46):18200-7. PubMed ID: 24227728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can the spotlight of attention be shaped like a doughnut? Evidence from steady-state visual evoked potentials.
    Müller MM; Hübner R
    Psychol Sci; 2002 Mar; 13(2):119-24. PubMed ID: 11933994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of visual attention in multiple object tracking: evidence from ERPs.
    Doran MM; Hoffman JE
    Atten Percept Psychophys; 2010 Jan; 72(1):33-52. PubMed ID: 20802834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature-based Attentional Amplitude Modulations of the Steady-state Visual Evoked Potentials Reflect Blood Oxygen Level Dependent Changes in Feature-sensitive Visual Areas.
    Boylan MR; Panitz C; Tebbe AL; Vieweg P; Forschack N; Müller MM; Keil A
    J Cogn Neurosci; 2023 Sep; 35(9):1493-1507. PubMed ID: 37432748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemifield Crossings during Multiple Object Tracking Affect Task Performance and Steady-State Visual Evoked Potentials.
    Minami T; Shinkai T; Nakauchi S
    Neuroscience; 2019 Jun; 409():162-168. PubMed ID: 31034975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective attention to the color and direction of moving stimuli: electrophysiological correlates of hierarchical feature selection.
    Anllo-Vento L; Hillyard SA
    Percept Psychophys; 1996 Feb; 58(2):191-206. PubMed ID: 8838164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliance on visual attention during visuomotor adaptation: an SSVEP study.
    Reuter EM; Bednark J; Cunnington R
    Exp Brain Res; 2015 Jul; 233(7):2041-51. PubMed ID: 25893908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of feature-selective and spatial attention at different stages of visual processing.
    Andersen SK; Fuchs S; Müller MM
    J Cogn Neurosci; 2011 Jan; 23(1):238-46. PubMed ID: 19702461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional Modulation in Early Visual Cortex: A Focused Reanalysis of Steady-state Visual Evoked Potential Studies.
    Adamian N; Andersen SK
    J Cogn Neurosci; 2024 Jan; 36(1):46-70. PubMed ID: 37847846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using frequency tagging to quantify attentional deployment in a visual divided attention task.
    Toffanin P; de Jong R; Johnson A; Martens S
    Int J Psychophysiol; 2009 Jun; 72(3):289-98. PubMed ID: 19452603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual Prediction Error Spreads Across Object Features in Human Visual Cortex.
    Jiang J; Summerfield C; Egner T
    J Neurosci; 2016 Dec; 36(50):12746-12763. PubMed ID: 27810936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.