These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 30321204)
21. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. Engdahl SM; Christie BP; Kelly B; Davis A; Chestek CA; Gates DH J Neuroeng Rehabil; 2015 Jun; 12():53. PubMed ID: 26071402 [TBL] [Abstract][Full Text] [Related]
22. Prosthesis satisfaction in a national sample of Veterans with upper limb amputation. Resnik L; Borgia M; Heinemann AW; Clark MA Prosthet Orthot Int; 2020 Apr; 44(2):81-91. PubMed ID: 31960734 [TBL] [Abstract][Full Text] [Related]
24. Osseointegrated Prosthetic Implants for People With Lower-Limb Amputation: A Health Technology Assessment. Ontario Health (Quality) Ont Health Technol Assess Ser; 2019; 19(7):1-126. PubMed ID: 31911825 [TBL] [Abstract][Full Text] [Related]
25. Effect of clinical parameters on the control of myoelectric robotic prosthetic hands. Atzori M; Gijsberts A; Castellini C; Caputo B; Hager AG; Elsig S; Giatsidis G; Bassetto F; Müller H J Rehabil Res Dev; 2016; 53(3):345-58. PubMed ID: 27272750 [TBL] [Abstract][Full Text] [Related]
26. A survey on what Australians with upper limb difference want in a prosthesis: justification for using soft robotics and additive manufacturing for customized prosthetic hands. Stephens-Fripp B; Jean Walker M; Goddard E; Alici G Disabil Rehabil Assist Technol; 2020 Apr; 15(3):342-349. PubMed ID: 30856031 [No Abstract] [Full Text] [Related]
27. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements. Deijs M; Bongers RM; Ringeling-van Leusen ND; van der Sluis CK J Neuroeng Rehabil; 2016 Mar; 13():26. PubMed ID: 26979272 [TBL] [Abstract][Full Text] [Related]
28. Movement quality of conventional prostheses and the DEKA Arm during everyday tasks. Cowley J; Resnik L; Wilken J; Smurr Walters L; Gates D Prosthet Orthot Int; 2017 Feb; 41(1):33-40. PubMed ID: 26932980 [TBL] [Abstract][Full Text] [Related]
29. User surveys support designing a prosthetic wrist that incorporates the Dart Thrower's Motion. Davidson M; Bodine C; Weir RFF Disabil Rehabil Assist Technol; 2019 Apr; 14(3):312-315. PubMed ID: 29514521 [TBL] [Abstract][Full Text] [Related]
30. Current rates of prosthetic usage in upper-limb amputees - have innovations had an impact on device acceptance? Salminger S; Stino H; Pichler LH; Gstoettner C; Sturma A; Mayer JA; Szivak M; Aszmann OC Disabil Rehabil; 2022 Jul; 44(14):3708-3713. PubMed ID: 33377803 [TBL] [Abstract][Full Text] [Related]
31. Functional benefit of an adaptive myoelectric prosthetic hand compared to a conventional myoelectric hand. Bergman K; Ornholmer L; Zackrisson K; Thyberg M Prosthet Orthot Int; 1992 Apr; 16(1):32-7. PubMed ID: 1584641 [TBL] [Abstract][Full Text] [Related]
32. Functional assessment of current upper limb prostheses: An integrated clinical and technological perspective. Capsi-Morales P; Piazza C; Sjoberg L; Catalano MG; Grioli G; Bicchi A; Hermansson LM PLoS One; 2023; 18(8):e0289978. PubMed ID: 37585427 [TBL] [Abstract][Full Text] [Related]
33. Influence of standardized activities on validity of Assessment of Capacity for Myoelectric Control. Lindner HY; Eliasson AC; Hermansson LM J Rehabil Res Dev; 2013; 50(10):1391-400. PubMed ID: 24699974 [TBL] [Abstract][Full Text] [Related]
34. Individualizing goals for users of externally powered partial hand prostheses. Whelan L; Flinn S; Wagner N J Rehabil Res Dev; 2014; 51(6):885-94. PubMed ID: 25478950 [TBL] [Abstract][Full Text] [Related]
35. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Pasquina PF; Evangelista M; Carvalho AJ; Lockhart J; Griffin S; Nanos G; McKay P; Hansen M; Ipsen D; Vandersea J; Butkus J; Miller M; Murphy I; Hankin D J Neurosci Methods; 2015 Apr; 244():85-93. PubMed ID: 25102286 [TBL] [Abstract][Full Text] [Related]
36. Effect of multi-grip myoelectric prosthetic hands on daily activities, pain-related disability and prosthesis use compared with single-grip myoelectric prostheses: A single-case study. Widehammar C; Hiyoshi A; Lidström Holmqvist K; Lindner H; Hermansson L J Rehabil Med; 2022 Jan; 54():jrm00245. PubMed ID: 34766184 [TBL] [Abstract][Full Text] [Related]
37. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review. Carey SL; Lura DJ; Highsmith MJ; ; J Rehabil Res Dev; 2015; 52(3):247-62. PubMed ID: 26230500 [TBL] [Abstract][Full Text] [Related]
38. Dexterity, activity performance, disability, quality of life, and independence in upper limb Veteran prosthesis users: a normative study. Resnik L; Borgia M; Cancio J; Heckman J; Highsmith J; Levy C; Phillips S; Webster J Disabil Rehabil; 2022 Jun; 44(11):2470-2481. PubMed ID: 33073621 [TBL] [Abstract][Full Text] [Related]
39. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses. Stein RB; Walley M Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of functionality in acquired and congenital upper extremity child amputees. Korkmaz M; Erbahçeci F; Ulger O; Topuz S Acta Orthop Traumatol Turc; 2012; 46(4):262-8. PubMed ID: 22951757 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]