BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30321309)

  • 1. Inhibition of GSK-3 to induce cardiomyocyte proliferation: a recipe for in situ cardiac regeneration.
    Singh AP; Umbarkar P; Guo Y; Force T; Gupte M; Lal H
    Cardiovasc Res; 2019 Jan; 115(1):20-30. PubMed ID: 30321309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation.
    D'Uva G; Aharonov A; Lauriola M; Kain D; Yahalom-Ronen Y; Carvalho S; Weisinger K; Bassat E; Rajchman D; Yifa O; Lysenko M; Konfino T; Hegesh J; Brenner O; Neeman M; Yarden Y; Leor J; Sarig R; Harvey RP; Tzahor E
    Nat Cell Biol; 2015 May; 17(5):627-38. PubMed ID: 25848746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulating Cardiogenesis as a Treatment for Heart Failure.
    Heallen TR; Kadow ZA; Kim JH; Wang J; Martin JF
    Circ Res; 2019 May; 124(11):1647-1657. PubMed ID: 31120819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb-mTORC1 signalling and leads to chronic heart failure.
    Xu N; Guan S; Chen Z; Yu Y; Xie J; Pan FY; Zhao NW; Liu L; Yang ZZ; Gao X; Xu B; Li CJ
    J Pathol; 2015 Apr; 235(5):672-85. PubMed ID: 25385233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting GSK-3 family members in the heart: a very sharp double-edged sword.
    Cheng H; Woodgett J; Maamari M; Force T
    J Mol Cell Cardiol; 2011 Oct; 51(4):607-13. PubMed ID: 21163265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nerve growth factor stimulates cardiac regeneration via cardiomyocyte proliferation in experimental heart failure.
    Lam NT; Currie PD; Lieschke GJ; Rosenthal NA; Kaye DM
    PLoS One; 2012; 7(12):e53210. PubMed ID: 23300892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GSK-3 at the heart of cardiometabolic diseases: Isoform-specific targeting is critical to therapeutic benefit.
    Umbarkar P; Ruiz Ramirez SY; Toro Cora A; Tousif S; Lal H
    Biochim Biophys Acta Mol Basis Dis; 2023 Aug; 1869(6):166724. PubMed ID: 37094727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regenerative biology: Neuregulin 1 makes heart muscle.
    Yutzey KE
    Nature; 2015 Apr; 520(7548):445-6. PubMed ID: 25903623
    [No Abstract]   [Full Text] [Related]  

  • 9. The Hippo Pathway in Cardiac Regeneration and Homeostasis: New Perspectives for Cell-Free Therapy in the Injured Heart.
    Zheng M; Jacob J; Hung SH; Wang J
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32664346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chemical biology approach to myocardial regeneration.
    Willems E; Lanier M; Forte E; Lo F; Cashman J; Mercola M
    J Cardiovasc Transl Res; 2011 Jun; 4(3):340-50. PubMed ID: 21424858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The promise of enhancer-associated long noncoding RNAs in cardiac regeneration.
    Ounzain S; Pedrazzini T
    Trends Cardiovasc Med; 2015 Oct; 25(7):592-602. PubMed ID: 25753179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of GSK-3 in Cardiac Health: Focusing on Cardiac Remodeling and Heart Failure.
    Tariq U; Uppulapu SK; Banerjee SK
    Curr Drug Targets; 2021; 22(13):1568-1576. PubMed ID: 33655828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window.
    Polizzotti BD; Ganapathy B; Walsh S; Choudhury S; Ammanamanchi N; Bennett DG; dos Remedios CG; Haubner BJ; Penninger JM; Kühn B
    Sci Transl Med; 2015 Apr; 7(281):281ra45. PubMed ID: 25834111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulation and function of the Hippo pathway in heart regeneration.
    Liu S; Martin JF
    Wiley Interdiscip Rev Dev Biol; 2019 Jan; 8(1):e335. PubMed ID: 30169913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of Glycogen Synthase Kinase-3 (GSK-3) in Cardiac Development and Heart Disease.
    Takahashi-Yanaga F
    J UOEH; 2018; 40(2):147-156. PubMed ID: 29925734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycogen synthase kinase-3beta is involved in the process of myocardial hypertrophy stimulated by insulin-like growth factor-1.
    Seimi SK; Seinosuke K; Tsuyoshi S; Tomomi U; Tetsuaki H; Miki K; Ryuji T; Kenji I; Mitsuhiro Y
    Circ J; 2004 Mar; 68(3):247-53. PubMed ID: 14993781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.
    Drowley L; Koonce C; Peel S; Jonebring A; Plowright AT; Kattman SJ; Andersson H; Anson B; Swanson BJ; Wang QD; Brolen G
    Stem Cells Transl Med; 2016 Feb; 5(2):164-74. PubMed ID: 26683871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The GSK-3 family as therapeutic target for myocardial diseases.
    Lal H; Ahmad F; Woodgett J; Force T
    Circ Res; 2015 Jan; 116(1):138-49. PubMed ID: 25552693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic regulation of MEK/Erks and Akt/GSK-3beta in human end-stage heart failure after left ventricular mechanical support: myocardial mechanotransduction-sensitivity as a possible molecular mechanism.
    Baba HA; Stypmann J; Grabellus F; Kirchhof P; Sokoll A; Schäfers M; Takeda A; Wilhelm MJ; Scheld HH; Takeda N; Breithardt G; Levkau B
    Cardiovasc Res; 2003 Aug; 59(2):390-9. PubMed ID: 12909322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Therapies Targeting Cardioprotection and Regeneration.
    Garrido V; Mendoza-Torres E; Riquelme JA; Díaz A; Pizarro M; Bustamante M; Chavez MN; Ocaranza MP; Mellado R; Corbalan R; Allende ML; Lavandero S
    Curr Pharm Des; 2017; 23(18):2592-2615. PubMed ID: 28079007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.