BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3032139)

  • 1. Extrachromosomal elements of extrachromosomal elements of Paramecium and their extrachromosomal elements.
    Quackenbush RL; Cox BJ; Kanabrocki JA
    Basic Life Sci; 1986; 40():265-78. PubMed ID: 3032139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More than the "Killer Trait": Infection with the Bacterial Endosymbiont Caedibacter taeniospiralis Causes Transcriptomic Modulation in Paramecium Host.
    Grosser K; Ramasamy P; Amirabad AD; Schulz MH; Gasparoni G; Simon M; Schrallhammer M
    Genome Biol Evol; 2018 Feb; 10(2):646-656. PubMed ID: 29390087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of the refractile body in expression of the killer trait in paramecium.
    Dilts JA
    Basic Life Sci; 1986; 40():279-89. PubMed ID: 3032140
    [No Abstract]   [Full Text] [Related]  

  • 4. A mutation in the R body-coding sequence destroys expression of the killer trait in P. tetraurelia.
    Dilts JA; Quackenbush RL
    Science; 1986 May; 232(4750):641-3. PubMed ID: 3008334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria).
    Beier CL; Horn M; Michel R; Schweikert M; Görtz HD; Wagner M
    Appl Environ Microbiol; 2002 Dec; 68(12):6043-50. PubMed ID: 12450827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmids from bacterial endosymbionts of hump-killer paramecia.
    Quackenbush RL
    Plasmid; 1983 May; 9(3):298-306. PubMed ID: 6306706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and expression of DNA sequences associated with the killer trait of Paramecium tetraurelia stock 47.
    Quackenbush RL; Burbach JA
    Proc Natl Acad Sci U S A; 1983 Jan; 80(1):250-4. PubMed ID: 6571998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stringent Expression Control of Pathogenic R-body Production in Legume Symbiont
    Matsuoka JI; Ishizuna F; Kurumisawa K; Morohashi K; Ogawa T; Hidaka M; Saito K; Ezawa T; Aono T
    mBio; 2017 Jul; 8(4):. PubMed ID: 28743814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic relationships among endosymbiotic R-body producer: Bacteria providing their host the killer trait.
    Schrallhammer M; Castelli M; Petroni G
    Syst Appl Microbiol; 2018 May; 41(3):213-220. PubMed ID: 29426636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. R-body-producing bacteria.
    Pond FR; Gibson I; Lalucat J; Quackenbush RL
    Microbiol Rev; 1989 Mar; 53(1):25-67. PubMed ID: 2651865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-Seq reveals genome and transcriptome of Caedibacter taeniospiralis, obligate endosymbiont of Paramecium.
    Pirritano M; Zaburannyi N; Grosser K; Gasparoni G; Müller R; Simon M; Schrallhammer M
    Sci Rep; 2020 Jun; 10(1):9727. PubMed ID: 32546745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Toxic Symbiont Caedibacter caryophila in the Cytoplasm of Paramecium novaurelia.
    Kusch J; Stremmel M; Breiner HW; Adams V; Schweikert M; Schmidt HJ
    Microb Ecol; 2000 Dec; 40(4):330-335. PubMed ID: 12035091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an ecological understanding of the killer trait - A reproducible protocol for testing its impact on freshwater ciliates.
    Koehler L; Flemming FE; Schrallhammer M
    Eur J Protistol; 2019 Apr; 68():108-120. PubMed ID: 30826731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Caedibacter endonucleobionts from the macronucleus of Paramecium caudatum and the identification of a mutant with blocked R-body synthesis.
    Schmidt HJ; Görtz HD; Pond FR; Quackenbush RL
    Exp Cell Res; 1988 Jan; 174(1):49-57. PubMed ID: 3335230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive advantages of Caedibacter-infected Paramecia.
    Kusch J; Czubatinski L; Wegmann S; Hubner M; Alter M; Albrecht P
    Protist; 2002 Mar; 153(1):47-58. PubMed ID: 12022275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosomal and extrachromosomal deoxyribonucleic acid from four bacterial endosymbionts derived from stock 51 of Paramecium tetraurelia.
    Dilts JA
    J Bacteriol; 1977 Feb; 129(2):888-94. PubMed ID: 838691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of the obligate endosymbiont "Caedibacter macronucleorum"Fokin and Görtz, 1993 and of its host Paramecium duboscqui strain Ku4-8.
    Schrallhammer M; Fokin SI; Schleifer KH; Petroni G
    J Eukaryot Microbiol; 2006; 53(6):499-506. PubMed ID: 17123414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracing the role of R-bodies in the killer trait: absence of toxicity of R-body producing recombinant E. coli on paramecia.
    Schrallhammer M; Galati S; Altenbuchner J; Schweikert M; Görtz HD; Petroni G
    Eur J Protistol; 2012 Nov; 48(4):290-6. PubMed ID: 22356923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation Conditions Can Cause a Shift from Mutualistic to Parasitic Behavior in the Symbiosis Between Paramecium and Its Bacterial Symbiont Caedibacter taeniospiralis.
    Schu MG; Schrallhammer M
    Curr Microbiol; 2018 Aug; 75(8):1099-1102. PubMed ID: 29693195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical map of a plasmid from Caedibacter taeniospiralis 51.
    Quackenbush RL; Dilts JA; Maser RL
    J Bacteriol; 1982 Nov; 152(2):939-42. PubMed ID: 6290459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.