These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 30321457)
1. Secondary metabolite as therapeutic agent from endophytic fungi Alternaria longipes strain VITN14G of mangrove plant Avicennia officinalis. Ranganathan N; Mahalingam G J Cell Biochem; 2019 Mar; 120(3):4021-4031. PubMed ID: 30321457 [TBL] [Abstract][Full Text] [Related]
2. 2,4,6-Triphenylaniline nanoemulsion formulation, optimization, and its application in type 2 diabetes mellitus. Ranganathan N; Mahalingam G J Cell Physiol; 2019 Dec; 234(12):22505-22516. PubMed ID: 31102272 [TBL] [Abstract][Full Text] [Related]
3. Crude extract and isolated bioactive compounds from Notholirion thomsonianum (Royale) Stapf as multitargets antidiabetic agents: in-vitro and molecular docking approaches. Mahnashi MH; Alqahtani YS; Alqarni AO; Alyami BA; Jan MS; Ayaz M; Ullah F; Rashid U; Sadiq A BMC Complement Med Ther; 2021 Oct; 21(1):270. PubMed ID: 34706708 [TBL] [Abstract][Full Text] [Related]
4. Characterization and evaluation of mycosterol secreted from endophytic strain of Gymnema sylvestre for inhibition of α-glucosidase activity. Ranjan A; Singh RK; Khare S; Tripathi R; Pandey RK; Singh AK; Gautam V; Tripathi JS; Singh SK Sci Rep; 2019 Nov; 9(1):17302. PubMed ID: 31754154 [TBL] [Abstract][Full Text] [Related]
5. α-glucosidase inhibitors from Syzygium polyanthum (Wight) Walp leaves as revealed by metabolomics and in silico approaches. Syabana MA; Yuliana ND; Batubara I; Fardiaz D J Ethnopharmacol; 2022 Jan; 282():114618. PubMed ID: 34508803 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of the antidiabetic potential of Tan DC; Idris KI; Kassim NK; Lim PC; Safinar Ismail I; Hamid M; Ng RC Pharm Biol; 2019 Dec; 57(1):345-354. PubMed ID: 31185767 [No Abstract] [Full Text] [Related]
7. Investigation of α-Glucosidase Inhibitory Metabolites from Nokhala A; Siddiqui MJ; Ahmed QU; Ahamad Bustamam MS; Zakaria AZA Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32059529 [TBL] [Abstract][Full Text] [Related]
8. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: pharmacological and computational approach. Nazir N; Zahoor M; Nisar M; Khan I; Karim N; Abdel-Halim H; Ali A BMC Complement Altern Med; 2018 Dec; 18(1):332. PubMed ID: 30545352 [TBL] [Abstract][Full Text] [Related]
9. Phytochemical Analysis and Antidiabetic Potential of Javaid A; Ashfaq UA; Zafar Z; Akmal A; Taj S; Khalid H Comb Chem High Throughput Screen; 2021; 24(3):465-471. PubMed ID: 32452324 [TBL] [Abstract][Full Text] [Related]
10. Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Khalil AMA; Abdelaziz AM; Khaleil MM; Hashem AH Lett Appl Microbiol; 2021 Mar; 72(3):263-274. PubMed ID: 33063859 [TBL] [Abstract][Full Text] [Related]
11. Boerhaavia diffusa inhibits key enzymes linked to type 2 diabetes in vitro and in silico; and modulates abdominal glucose absorption and muscle glucose uptake ex vivo. Oyebode OA; Erukainure OL; Chukwuma CI; Ibeji CU; Koorbanally NA; Islam S Biomed Pharmacother; 2018 Oct; 106():1116-1125. PubMed ID: 30119178 [TBL] [Abstract][Full Text] [Related]
12. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Trinh BTD; Staerk D; Jäger AK J Ethnopharmacol; 2016 Jun; 186():189-195. PubMed ID: 27041401 [TBL] [Abstract][Full Text] [Related]
13. Purification of ursolic acid and β-sitosterol from endophytic Dwibedi V; Mishra SS; George N; Joshi M; Kaur G; Gupta M; Rath SK J Biomol Struct Dyn; 2024 Aug; 42(13):6688-6699. PubMed ID: 37477594 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of in vitro α-amylase and α-glucosidase inhibitory potential and hemolytic effect of phenolic enriched fractions of the aerial part of Salvia officinalis L. Mahdi S; Azzi R; Lahfa FB Diabetes Metab Syndr; 2020; 14(4):689-694. PubMed ID: 32442919 [TBL] [Abstract][Full Text] [Related]
15. Oleanolic acid as a potential antidiabetic component of Mohammed A; Victoria Awolola G; Ibrahim MA; Anthony Koorbanally N; Islam MS Nat Prod Res; 2021 Mar; 35(5):788-791. PubMed ID: 30990061 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of resveratrol oligomers from the stem bark of Hopea ponga (Dennst.) Mabb. And their antidiabetic effect by modulation of digestive enzymes, protein glycation and glucose uptake in L6 myocytes. Sasikumar P; Lekshmy K; Sini S; Prabha B; Kumar NA; Sivan VV; Jithin MM; Jayamurthy P; Shibi IG; Radhakrishnan KV J Ethnopharmacol; 2019 May; 236():196-204. PubMed ID: 30844488 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effect of potential alpha-amylase inhibitors from Egyptian propolis with acarbose using in silico and in vitro combination analysis. Nada AA; Metwally AM; Asaad AM; Celik I; Ibrahim RS; Eldin SMS BMC Complement Med Ther; 2024 Jan; 24(1):65. PubMed ID: 38291462 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type II diabetes. Jiao Y; Hua D; Huang D; Zhang Q; Yan C Food Funct; 2018 Jul; 9(7):3997-4007. PubMed ID: 29975387 [TBL] [Abstract][Full Text] [Related]
19. Enzyme inhibitory metabolites from endophytic Penicillium citrinum isolated from Boswellia sacra. Ali S; Khan AL; Ali L; Rizvi TS; Khan SA; Hussain J; Hamayun M; Al-Harrasi A Arch Microbiol; 2017 Jul; 199(5):691-700. PubMed ID: 28220202 [TBL] [Abstract][Full Text] [Related]
20. Molecular docking studies of (4Z, 12Z)-cyclopentadeca-4, 12-dienone from Grewia hirsuta with some targets related to type 2 diabetes. Natarajan A; Sugumar S; Bitragunta S; Balasubramanyan N BMC Complement Altern Med; 2015 Mar; 15():73. PubMed ID: 25885803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]