These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30321477)

  • 41. A Simple Method that Combines CRISPR and AID to Quickly Generate Conditional Knockouts for Essential Genes in Various Vertebrate Cell Lines.
    Nishimura K; Fukagawa T
    Methods Mol Biol; 2022; 2377():109-122. PubMed ID: 34709613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors.
    Natsume T; Kiyomitsu T; Saga Y; Kanemaki MT
    Cell Rep; 2016 Apr; 15(1):210-218. PubMed ID: 27052166
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Drosophila peptidyl-prolyl isomerase Pin1 modulates circadian rhythms via regulating levels of PERIOD.
    Kang SW; Lee E; Cho E; Seo JH; Ko HW; Kim EY
    Biochem Biophys Res Commun; 2015 Jul; 463(3):235-40. PubMed ID: 25998391
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dependence of the period on the rate of protein degradation in minimal models for circadian oscillations.
    GĂ©rard C; Gonze D; Goldbeter A
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1908):4665-83. PubMed ID: 19884174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptation of the AID system for stem cell and transgenic mouse research.
    Pryzhkova MV; Xu MJ; Jordan PW
    Stem Cell Res; 2020 Dec; 49():102078. PubMed ID: 33202307
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly conserved Drosophila ananassae timeless gene functions as a clock component in Drosophila melanogaster.
    Nishinokubi I; Shimoda M; Kako K; Sakai T; Fukamizu A; Ishida N
    Gene; 2003 Mar; 307():183-90. PubMed ID: 12706901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling the effect of phosphorylation on the circadian clock of Drosophila.
    Risau-Gusman S; Gleiser PM
    J Theor Biol; 2012 Aug; 307():53-61. PubMed ID: 22588022
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fast and tuneable auxin-inducible degron for depletion of target proteins in budding yeast.
    Mendoza-Ochoa GI; Barrass JD; Terlouw BR; Maudlin IE; de Lucas S; Sani E; Aslanzadeh V; Reid JAE; Beggs JD
    Yeast; 2019 Jan; 36(1):75-81. PubMed ID: 30375036
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental assessment of the network properties of the Drosophila circadian clock.
    Beckwith EJ; Ceriani MF
    J Comp Neurol; 2015 Apr; 523(6):982-96. PubMed ID: 25504089
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An improved auxin-inducible degron system for fission yeast.
    Zhang XR; Zhao L; Suo F; Gao Y; Wu Q; Qi X; Du LL
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34849776
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An ecdysone-responsive nuclear receptor regulates circadian rhythms in Drosophila.
    Kumar S; Chen D; Jang C; Nall A; Zheng X; Sehgal A
    Nat Commun; 2014 Dec; 5():5697. PubMed ID: 25511299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Auxin-Inducible Depletion of the Essentialome Suggests Inhibition of TORC1 by Auxins and Inhibition of Vrg4 by SDZ 90-215, a Natural Antifungal Cyclopeptide.
    Snyder NA; Kim A; Kester L; Gale AN; Studer C; Hoepfner D; Roggo S; Helliwell SB; Cunningham KW
    G3 (Bethesda); 2019 Mar; 9(3):829-840. PubMed ID: 30670608
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase shifting of the circadian clock by induction of the Drosophila period protein.
    Edery I; Rutila JE; Rosbash M
    Science; 1994 Jan; 263(5144):237-40. PubMed ID: 8284676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice.
    Yesbolatova A; Saito Y; Kitamoto N; Makino-Itou H; Ajima R; Nakano R; Nakaoka H; Fukui K; Gamo K; Tominari Y; Takeuchi H; Saga Y; Hayashi KI; Kanemaki MT
    Nat Commun; 2020 Nov; 11(1):5701. PubMed ID: 33177522
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Doubletime Nuclear Localization Signal Mediates an Interaction with Bride of Doubletime to Promote Circadian Function.
    Venkatesan A; Fan JY; Nauman C; Price JL
    J Biol Rhythms; 2015 Aug; 30(4):302-17. PubMed ID: 26082158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light.
    Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.
    Li W; Ou G
    Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Circadian Rhythms and Sleep in
    Dubowy C; Sehgal A
    Genetics; 2017 Apr; 205(4):1373-1397. PubMed ID: 28360128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Drosophila Shep and C. elegans SUP-26 are RNA-binding proteins that play diverse roles in nervous system development.
    Schachtner LT; Sola IE; Forand D; Antonacci S; Postovit AJ; Mortimer NT; Killian DJ; Olesnicky EC
    Dev Genes Evol; 2015 Nov; 225(6):319-30. PubMed ID: 26271810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.