These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 3032156)
21. mRNA levels for alpha-subunit of prolyl 4-hydroxylase and fibrillar collagens in immobilized rat skeletal muscle. Han XY; Wang W; Myllylä R; Virtanen P; Karpakka J; Takala TE J Appl Physiol (1985); 1999 Jul; 87(1):90-6. PubMed ID: 10409561 [TBL] [Abstract][Full Text] [Related]
22. Time course of muscular atrophy during immobilization of hindlimbs in rats. Booth FW J Appl Physiol Respir Environ Exerc Physiol; 1977 Oct; 43(4):656-61. PubMed ID: 198396 [TBL] [Abstract][Full Text] [Related]
23. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Medina R; Wing SS; Goldberg AL Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):631-7. PubMed ID: 7741690 [TBL] [Abstract][Full Text] [Related]
24. Changes in actin synthesis and alpha-actin-mRNA content in rat muscle during immobilization. Watson PA; Stein JP; Booth FW Am J Physiol; 1984 Jul; 247(1 Pt 1):C39-44. PubMed ID: 6742182 [TBL] [Abstract][Full Text] [Related]
25. Muscle atrophy by limb immobilization is not caused by insulin resistance. Butler DT; Booth FW Horm Metab Res; 1984 Apr; 16(4):172-4. PubMed ID: 6373543 [TBL] [Abstract][Full Text] [Related]
26. Effect of hypokinesia-hypodynamia on rat muscle oxidative capacity and glucose uptake. Fell RD; Steffen JM; Musacchia XJ Am J Physiol; 1985 Sep; 249(3 Pt 2):R308-12. PubMed ID: 2994497 [TBL] [Abstract][Full Text] [Related]
27. Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. Wong TS; Booth FW J Appl Physiol (1985); 1990 Nov; 69(5):1709-17. PubMed ID: 1703145 [TBL] [Abstract][Full Text] [Related]
28. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization. Tucker KR; Seider MJ; Booth FW J Appl Physiol Respir Environ Exerc Physiol; 1981 Jul; 51(1):73-7. PubMed ID: 7263427 [TBL] [Abstract][Full Text] [Related]
29. Increased contractile activity decreases RNA-protein interaction in the 3'-UTR of cytochrome c mRNA. Yan Z; Salmons S; Dang YI; Hamilton MT; Booth FW Am J Physiol; 1996 Oct; 271(4 Pt 1):C1157-66. PubMed ID: 8897821 [TBL] [Abstract][Full Text] [Related]
30. Actin and creatine kinase mRNAs in rat levator ani and vastus muscles as a function of androgen status. Boissonneault G; Chapdelaine P; Tremblay RR J Appl Physiol (1985); 1990 Apr; 68(4):1548-61. PubMed ID: 2347794 [TBL] [Abstract][Full Text] [Related]
31. A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse. Caron AZ; Drouin G; Desrosiers J; Trensz F; Grenier G J Appl Physiol (1985); 2009 Jun; 106(6):2049-59. PubMed ID: 19342435 [TBL] [Abstract][Full Text] [Related]
32. Trace element movement and oxidative stress in skeletal muscle atrophied by immobilization. Kondo H; Miura M; Nakagaki I; Sasaki S; Itokawa Y Am J Physiol; 1992 May; 262(5 Pt 1):E583-90. PubMed ID: 1590370 [TBL] [Abstract][Full Text] [Related]
33. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization. Fitts RH; Brimmer CJ J Appl Physiol (1985); 1985 Sep; 59(3):916-23. PubMed ID: 4055577 [TBL] [Abstract][Full Text] [Related]
34. Quadriceps muscle atrophy after anterior cruciate ligament transection involves increased mRNA levels of atrogin-1, muscle ring finger 1, and myostatin. Delfino GB; Peviani SM; Durigan JL; Russo TL; Baptista IL; Ferretti M; Moriscot AS; Salvini TF Am J Phys Med Rehabil; 2013 May; 92(5):411-9. PubMed ID: 22854904 [TBL] [Abstract][Full Text] [Related]
35. Effect of hindlimb immobilization on the fatigability of skeletal muscle. Witzmann FA; Kim DH; Fitts RH J Appl Physiol Respir Environ Exerc Physiol; 1983 May; 54(5):1242-8. PubMed ID: 6863083 [TBL] [Abstract][Full Text] [Related]
36. Disuse impairs the muscle protein synthetic response to protein ingestion in healthy men. Wall BT; Snijders T; Senden JM; Ottenbros CL; Gijsen AP; Verdijk LB; van Loon LJ J Clin Endocrinol Metab; 2013 Dec; 98(12):4872-81. PubMed ID: 24108315 [TBL] [Abstract][Full Text] [Related]
37. Molecular and cellular defects of skeletal muscle in an animal model of acute quadriplegic myopathy. Mozaffar T; Haddad F; Zeng M; Zhang LY; Adams GR; Baldwin KM Muscle Nerve; 2007 Jan; 35(1):55-65. PubMed ID: 16967495 [TBL] [Abstract][Full Text] [Related]
38. Recovery of skeletal muscle after 3 mo of hindlimb immobilization in rats. Booth FW; Seider MJ J Appl Physiol Respir Environ Exerc Physiol; 1979 Aug; 47(2):435-9. PubMed ID: 468702 [TBL] [Abstract][Full Text] [Related]
39. Regulation of synthesis of fibrillar collagens in rat skeletal muscle during immobilization in shortened and lengthened positions. Ahtikoski AM; Koskinen SO; Virtanen P; Kovanen V; Takala TE Acta Physiol Scand; 2001 Jun; 172(2):131-40. PubMed ID: 11442453 [TBL] [Abstract][Full Text] [Related]
40. Protein metabolism in rat tibialis anterior muscle after stimulated chronic eccentric exercise. Wong TS; Booth FW J Appl Physiol (1985); 1990 Nov; 69(5):1718-24. PubMed ID: 1703146 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]