These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 3032157)

  • 1. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl-radical generation?
    Aruoma OI; Halliwell B
    Biochem J; 1987 Jan; 241(1):273-8. PubMed ID: 3032157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The superoxide-dependent transfer of iron from ferritin to transferrin and lactoferrin.
    Monteiro HP; Winterbourn CC
    Biochem J; 1988 Dec; 256(3):923-8. PubMed ID: 2852009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide.
    Baldwin DA; Jenny ER; Aisen P
    J Biol Chem; 1984 Nov; 259(21):13391-4. PubMed ID: 6092375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation.
    Britigan BE; Edeker BL
    J Clin Invest; 1991 Oct; 88(4):1092-102. PubMed ID: 1655825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pentoxifylline. A hydroxyl radical scavenger.
    Freitas JP; Filipe PM
    Biol Trace Elem Res; 1995; 47(1-3):307-11. PubMed ID: 7779563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease.
    Rowley DA; Halliwell B
    Clin Sci (Lond); 1983 Jun; 64(6):649-53. PubMed ID: 6301745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of porphyrins on iron-catalysed generation of hydroxyl radicals.
    Van Steveninck J; Boegheim JP; Dubbelman TM; Van der Zee J
    Biochem J; 1988 Feb; 250(1):197-201. PubMed ID: 2833235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin.
    Bannister JV; Bannister WH; Hill HA; Thornalley PJ
    Biochim Biophys Acta; 1982 Mar; 715(1):116-20. PubMed ID: 6280774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
    Ambruso DR; Johnston RB
    J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese complexes and the generation and scavenging of hydroxyl free radicals.
    Cheton PL; Archibald FS
    Free Radic Biol Med; 1988; 5(5-6):325-33. PubMed ID: 2855733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction?
    Rowley DA; Halliwell B
    Arch Biochem Biophys; 1983 Aug; 225(1):279-84. PubMed ID: 6311105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic study on iron stimulation of the xanthine oxidase dependent oxidation of ascorbate.
    Løvstad RA
    Biometals; 2003 Sep; 16(3):435-9. PubMed ID: 12680706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of iron and phagocytosis on murine macrophage activation in vitro.
    Gauthier YP; Isoard P
    Biol Trace Elem Res; 1995; 47(1-3):37-50. PubMed ID: 7779572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Antioxidant and prooxidant properties of the ascorbic acid, dihydroquercetine and mexidol in the radical reactions induced by the ionizing radiation and chemical reagents].
    Riabchenko NI; Riabchenko VI; Ivannik BP; Dzikovskaia LA; Sin'kova RV; Grosheva IP; Degtiareva ES; Ivanova TI
    Radiats Biol Radioecol; 2010; 50(2):186-94. PubMed ID: 20464967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of alpha 1-antiproteinase by hydroxyl radicals. The effect of uric acid.
    Aruoma OI; Halliwell B
    FEBS Lett; 1989 Feb; 244(1):76-80. PubMed ID: 2538353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl radical formation and iron-binding proteins. Stimulation by the purple acid phosphatases.
    Sibille JC; Doi K; Aisen P
    J Biol Chem; 1987 Jan; 262(1):59-62. PubMed ID: 3025217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.