These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 3032188)

  • 1. Isolation of a biotin receptor from hepatic plasma membranes.
    Vesely DL; Kemp SF; Elders MJ
    Biochem Biophys Res Commun; 1987 Mar; 143(3):913-6. PubMed ID: 3032188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of distinct receptor complexes that account for high-and low-affinity glucagon binding to hepatic plasma membranes.
    Mason JC; Tager HS
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6835-9. PubMed ID: 2995990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of receptors for osteogenic protein-1/bone morphogenetic protein-7 (OP-1/BMP-7) in rat kidneys.
    Bosukonda D; Shih MS; Sampath KT; Vukicevic S
    Kidney Int; 2000 Nov; 58(5):1902-11. PubMed ID: 11044210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porcine zona pellucida ZP3 alpha glycoprotein mediates binding of the biotin-labeled M(r) 55,000 family (ZP3) to boar sperm membrane vesicles.
    Yurewicz EC; Pack BA; Armant DR; Sacco AG
    Mol Reprod Dev; 1993 Nov; 36(3):382-9. PubMed ID: 8286122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The partial characterization of the binding of avidin-biotin complex to rat liver plasma membrane.
    Chalifour LE; Dakshinamurti K
    Biochem J; 1983 Jan; 210(1):121-8. PubMed ID: 6847638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of a porcine hepatic ferritin receptor.
    Adams PC; Mack U; Powell LW; Halliday JW
    Comp Biochem Physiol B; 1988; 90(4):837-41. PubMed ID: 2854767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a bile acid receptor in isolated liver surface membranes.
    Accatino L; Simon FR
    J Clin Invest; 1976 Feb; 57(2):496-508. PubMed ID: 3520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two independent lipoprotein receptors on hepatic membranes of dog, swine, and man. Apo-B,E and apo-E receptors.
    Mahley RW; Hui DY; Innerarity TL; Weisgraber KH
    J Clin Invest; 1981 Nov; 68(5):1197-206. PubMed ID: 6271808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a phosphomannosyl receptor from bovine liver membranes.
    Mitchell DC; Sahagian GG; Distler JJ; Wagner RM; Jourdian GW
    Methods Enzymol; 1983; 98():304-9. PubMed ID: 6321904
    [No Abstract]   [Full Text] [Related]  

  • 10. Insulin receptors in the heart muscle. Demonstration of specific binding sites and impairment of insulin binding in the plasma membrane of the obese hyperglycemic mouse.
    Forgue ME; Freychet P
    Diabetes; 1975 Aug; 24(8):715-23. PubMed ID: 169173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of albumin binding to rat liver plasma membranes. Implications for the albumin receptor hypothesis.
    Stremmel W; Potter BJ; Berk PD
    Biochim Biophys Acta; 1983 Mar; 756(1):20-7. PubMed ID: 6297615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of prolactin binding sites in vitro by membrane fluidizers. IV. Differential effects on plasma membrane and Golgi fractions of male prostate and female liver in the rat.
    Dave JR; Witorsch RJ
    Biochem Biophys Res Commun; 1986 Feb; 134(3):1122-8. PubMed ID: 3004484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucagon receptor of human liver. Studies of its molecular weight and binding properties, and its ability to activate hepatic adenylyl cyclase of non-obese and obese subjects.
    Livingston JN; Einarsson K; Backman L; Ewerth S; Arner P
    J Clin Invest; 1985 Feb; 75(2):397-403. PubMed ID: 2982913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding properties of high-density lipoprotein subfractions and low-density lipoproteins to rabbit hepatocytes.
    Soltys PA; Portman OW; O'Malley JP
    Biochim Biophys Acta; 1982 Nov; 713(2):300-14. PubMed ID: 6295496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity purification of the hepatic high-density lipoprotein receptor identifies two acidic glycoproteins and enables further characterization of their binding properties.
    Hidaka H; Fidge NH
    Biochem J; 1992 May; 284 ( Pt 1)(Pt 1):161-7. PubMed ID: 1318018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucagon receptor binding, dissociation and degradation in rat liver plasma membranes studied by a microperifusion method.
    Frandsen EK; Bacchus RA
    Biochim Biophys Acta; 1987 Jun; 929(1):74-80. PubMed ID: 3036248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of disulfide bonds in human growth hormone binding and dissociation in isolated rat hepatocytes and liver plasma membranes.
    Moore WV; Wohnlich LP; Fix JA
    Endocrinology; 1983 Jun; 112(6):2152-8. PubMed ID: 6303761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of sites that bind human somatotropin (growth hormone) in the liver of the pregnant rabbit.
    Cadman HF; Wallis M
    Biochem J; 1981 Sep; 198(3):605-14. PubMed ID: 6275854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunological evidence for the transmembrane nature of the rat liver receptor for asialoglycoproteins.
    Harford J; Ashwell GG
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1557-61. PubMed ID: 6262814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hormone action at the membrane level. IV. Epinephrine binding to rat liver plasma membranes and rat epididymal fat cells.
    Lesko L; Marinetti GV
    Biochim Biophys Acta; 1975 Mar; 382(3):419-36. PubMed ID: 164909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.