These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30322110)
1. Metallurgical and Hydrogen Effects on the Small Punch Tested Mechanical Properties of PH-13-8Mo Stainless Steel. Snir Y; Haroush S; Danon A; Landau A; Gelbstein Y; Eliezer D Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322110 [TBL] [Abstract][Full Text] [Related]
2. Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test. Guan K; Szpunar JA; Matocha K; Wang D Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773029 [TBL] [Abstract][Full Text] [Related]
3. Effect of Yttrium on the Microstructure and Mechanical Properties of PH13-8Mo Stainless Steels Produced by Selective Laser Melting. Wang CJ; Liu C; Zhang MX; Jiang L; Liu Y; Liu ZB; Liang JX Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955376 [TBL] [Abstract][Full Text] [Related]
4. The Mechanical Behavior of HAVAR Foils Using the Small Punch Technique. Haroush S; Moreno D; Silverman I; Turgeman A; Shneck R; Gelbstein Y Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772853 [TBL] [Abstract][Full Text] [Related]
5. Microstructural Evolution and Mechanical Behavior of Thermally Aged Cast Duplex Stainless Steel. Li Z; Hu Y; Chen T; Wang X; Liu P; Lu Y Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33321825 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the tensile properties of high-strength stainless steels using small punch testing. Li R; Wei W; Chen R; Wu M; Lai Y Sci Prog; 2024; 107(3):368504241280872. PubMed ID: 39328082 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen Embrittlement of the Additively Manufactured High-Strength X3NiCoMoTi 18-9-5 Maraging Steel. Strakosova A; Roudnická M; Ekrt O; Vojtěch D; Michalcová A Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501163 [TBL] [Abstract][Full Text] [Related]
8. Effects of Wall Thickness Variation on Hydrogen Embrittlement Susceptibility of Additively Manufactured 316L Stainless Steel with Lattice Auxetic Structures. Khedr M; Hamada A; Abd-Elaziem W; Jaskari M; Elsamanty M; Kömi J; Järvenpää A Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984403 [TBL] [Abstract][Full Text] [Related]
9. Change in Hydrogen Trapping Characteristics and Influence on Hydrogen Embrittlement Sensitivity in a Medium-Carbon, High-Strength Steel: The Effects of Heat Treatments. Tong Z; Wang H; Zheng W; Zhou H Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673211 [TBL] [Abstract][Full Text] [Related]
10. Mechanical Properties and Fracture Behavior of an EBW T2 Copper-45 Steel Joint. Liu P; Bao J; Bao Y Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137808 [TBL] [Abstract][Full Text] [Related]
11. Influence of high temperature diffusion bonding process parameters on mechanical and metallurgical characteristics of nickel superalloy to martensitic stainless steel. Arun Negemiya A; Rajakumar S; Balasubramanian V Microsc Res Tech; 2020 Mar; 83(3):318-328. PubMed ID: 31769127 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the Influence of Pre-Charged Hydrogen on Fracture Toughness of As-Received 2.25Cr1Mo0.25V Steel and Weld. Song Y; Chai M; Yang B; Han Z; Ai S; Li Y Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29937529 [TBL] [Abstract][Full Text] [Related]
13. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners. Brahimi SV; Yue S; Sriraman KR Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607186 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a Surface Hydrogen Charging Product Affecting the Mechanical Properties in 2205 Duplex Stainless Steel. Kan B; Yang Z; Li J Materials (Basel); 2019 May; 12(10):. PubMed ID: 31126131 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting. Kwon YJ; Casati R; Coduri M; Vedani M; Lee CS Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31349538 [TBL] [Abstract][Full Text] [Related]
16. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel. Kim SG; Kim JY; Hwang B Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000 [TBL] [Abstract][Full Text] [Related]
17. Effects of the Addition of Nb and V on the Microstructural Evolution and Hydrogen Embrittlement Resistance of High Strength Martensitic Steels. Liu B; Liao X; Tang Y; Si Y; Feng Y; Cao P; Dai Q; Li K Scanning; 2022; 2022():4040800. PubMed ID: 35282565 [TBL] [Abstract][Full Text] [Related]
18. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature. Bruchhausen M; Lapetite JM; Ripplinger S; Austin T Data Brief; 2016 Dec; 9():245-51. PubMed ID: 27660812 [TBL] [Abstract][Full Text] [Related]
19. Fracture Mechanisms of S355 Steel-Experimental Research, FEM Simulation and SEM Observation. Dzioba I; Lipiec S Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31795336 [TBL] [Abstract][Full Text] [Related]
20. Mechanical Properties of P91 Steel (X10CrMoVNb9-1) during Simulated Operation in a Hydrogen-Containing Environment. Junak G; Adamiec J; Łyczkowska K Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]