These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30322197)

  • 1. Using the Machine Vision Method to Develop an On-machine Insert Condition Monitoring System for Computer Numerical Control Turning Machine Tools.
    Sun WH; Yeh SS
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing.
    Jaen-Cuellar AY; Osornio-Ríos RA; Trejo-Hernández M; Zamudio-Ramírez I; Díaz-Saldaña G; Pacheco-Guerrero JP; Antonino-Daviu JA
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Insert Condition Classification System for CNC Lathes Using Power Spectral Density Distribution of Accelerometer Vibration Signals.
    Huang YW; Yeh SS
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tool Condition Monitoring of the Cutting Capability of a Turning Tool Based on Thermography.
    Brili N; Ficko M; Klančnik S
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34641006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Evaluation of Surface Quality, Tool Wear, and Specific Cutting Energy for Wiper and Conventional Carbide Inserts in Hard Turning of AISI 4340 Alloy Steel.
    Abbas AT; Anwar S; Hegab H; Benyahia F; Ali H; Elkaseer A
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33228121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals.
    Ferrando Chacón JL; Fernández de Barrena T; García A; Sáez de Buruaga M; Badiola X; Vicente J
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the Wear Performance of TiB
    Chowdhury MSI; Bose B; Fox-Rabinovich G; Veldhuis SC
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34074059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer Vision Tool-Setting System of Numerical Control Machine Tool.
    Hou B; Zhang C; Yang S
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32947983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the Effects of Initial Cutting Conditions and Transition Period on Ultimate Tool Life when Machining Inconel 718.
    Memarianpour M; Niknam SA; Turenne S; Balazinski M
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision.
    Wei W; Yin J; Zhang J; Zhang H; Lu Z
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribological Aspects of Cutting Tool Wear during the Turning of Stainless Steels.
    Zawada-Michałowska M; Pieśko P; Józwik J
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31888024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Possibility of Applying Acoustic Emission and Dynamometric Methods for Monitoring the Turning Process.
    Dudzik K; Labuda W
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32629870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tool Wear Effect on Surface Integrity in AISI 1045 Steel Dry Turning.
    Magalhães LC; Carlesso GC; López de Lacalle LN; Souza MT; de Oliveira Palheta F; Binder C
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization.
    Alajmi MS; Almeshal AM
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.
    Ahmed YS; Fox-Rabinovich G; Paiva JM; Wagg T; Veldhuis SC
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29068405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning.
    Tabaszewski M; Twardowski P; Wiciak-Pikuła M; Znojkiewicz N; Felusiak-Czyryca A; Czyżycki J
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition.
    Caggiano A
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29522443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on In-Situ Tool Wear Detection during Micro End Milling Based on Machine Vision.
    Zhang X; Yu H; Li C; Yu Z; Xu J; Li Y; Yu H
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and Trends.
    Kuntoğlu M; Aslan A; Pimenov DY; Usca ÜA; Salur E; Gupta MK; Mikolajczyk T; Giasin K; Kapłonek W; Sharma S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tool-Wear-Estimation System in Milling Using Multi-View CNN Based on Reflected Infrared Images.
    Jang WK; Kim DW; Seo YH; Kim BH
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.