These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30322201)

  • 1. On the Frequency Response of Nanostructured Thermoacoustic Loudspeakers.
    Torraca P; Bobinger M; Servadio M; Pavan P; Becherer M; Lugli P; Larcher L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Transparent, Flexible, and Self-Healable Thermoacoustic Loudspeakers.
    Kang DH; Cho S; Sung S; Kim YR; Lee H; Choe A; Yeom J; Kim MP; Kim JC; Noh SM; Ko H
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53184-53192. PubMed ID: 33191748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-Configurable MXene-Based Thermoacoustic Loudspeakers with Tunable Sound Directivity.
    Kim J; Jung G; Jung S; Bae MH; Yeom J; Park J; Lee Y; Kim YR; Kang DH; Oh JH; Park S; An KS; Ko H
    Adv Mater; 2023 Nov; 35(46):e2306637. PubMed ID: 37740254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones.
    Kang S; Cho S; Shanker R; Lee H; Park J; Um DS; Lee Y; Ko H
    Sci Adv; 2018 Aug; 4(8):eaas8772. PubMed ID: 30083604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin thermoacoustic nanobridge loudspeakers from ALD on polyimide.
    Brown JJ; Moore NC; Supekar OD; Gertsch JC; Bright VM
    Nanotechnology; 2016 Nov; 27(47):475504. PubMed ID: 27779111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers.
    Xiao L; Chen Z; Feng C; Liu L; Bai ZQ; Wang Y; Qian L; Zhang Y; Li Q; Jiang K; Fan S
    Nano Lett; 2008 Dec; 8(12):4539-45. PubMed ID: 19367976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoacoustic transduction in individual suspended carbon nanotubes.
    Mason BJ; Chang SW; Chen J; Cronin SB; Bushmaker AW
    ACS Nano; 2015 May; 9(5):5372-6. PubMed ID: 25961803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Transient Thermoacoustic Characteristics and Performance in Carbon Nanotube Sponge Underwater Transducers.
    Qi Q; Li Z; Yin H; Feng Y; Zhou Z; Rong D
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-bench for the experimental characterization of porous material used in thermoacoustic refrigerators.
    Poignand G; Olivier C; Penelet G
    J Acoust Soc Am; 2022 Nov; 152(5):2804. PubMed ID: 36456285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Large-Scale and Low-Cost Thermoacoustic Loudspeaker Based on Three-Dimensional Graphene Foam.
    Hou W; Wei Y; Wang Y; Duan S; Guo Z; Tian H; Yang Y; Ren TL
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38683903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-Standing Graphene Thermophone on a Polymer-Mesh Substrate.
    Kim CS; Hong SK; Lee JM; Kang DS; Cho BJ; Choi JW
    Small; 2016 Jan; 12(2):185-9. PubMed ID: 26619270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Based Thermoacoustic Sound Source.
    Qiao Y; Gou G; Wu F; Jian J; Li X; Hirtz T; Zhao Y; Zhi Y; Wang F; Tian H; Yang Y; Ren TL
    ACS Nano; 2020 Apr; 14(4):3779-3804. PubMed ID: 32186849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonized Electrospun Nanofiber Sheets for Thermophones.
    Aliev AE; Perananthan S; Ferraris JP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31192-31201. PubMed ID: 27776207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound radiation from a three-layer thermoacoustic transformation device.
    Nishioka T; Teshima Y; Mano T; Sakai K; Asada T; Matsukawa M; Ohta T; Hiryu S
    Ultrasonics; 2015 Mar; 57():84-9. PubMed ID: 25465964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.
    Daschewski M; Kreutzbruck M; Prager J
    Ultrasonics; 2015 Dec; 63():16-22. PubMed ID: 26101177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Two-Dimensional Ti
    Gou GY; Jin ML; Lee BJ; Tian H; Wu F; Li YT; Ju ZY; Jian JM; Geng XS; Ren J; Wei Y; Jiang GY; Qiao Y; Li X; Kim SJ; Gao M; Jung HT; Ahn CW; Yang Y; Ren TL
    ACS Nano; 2019 Nov; 13(11):12613-12620. PubMed ID: 31525030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker.
    Kim CS; Lee KE; Lee JM; Kim SO; Cho BJ; Choi JW
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22295-300. PubMed ID: 27532328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative nanostructures for thermophones.
    Aliev AE; Mayo NK; Jung de Andrade M; Robles RO; Fang S; Baughman RH; Zhang M; Chen Y; Lee JA; Kim SJ
    ACS Nano; 2015 May; 9(5):4743-56. PubMed ID: 25748853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review on the conversion of thermoacoustic power into electricity.
    Timmer MAG; de Blok K; van der Meer TH
    J Acoust Soc Am; 2018 Feb; 143(2):841. PubMed ID: 29495704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal response of transparent silver nanowire/PEDOT:PSS film heaters.
    Ji S; He W; Wang K; Ran Y; Ye C
    Small; 2014 Dec; 10(23):4951-60. PubMed ID: 25049116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.