BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 30322215)

  • 1. Ion Channels in Pulmonary Hypertension: A Therapeutic Interest?
    Lambert M; Capuano V; Olschewski A; Sabourin J; Nagaraj C; Girerd B; Weatherald J; Humbert M; Antigny F
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30322215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of ion channels in pulmonary arterial hypertension.
    Guibert C; Marthan R; Savineau JP
    Curr Pharm Des; 2007; 13(24):2443-55. PubMed ID: 17692012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Store-Operated Ca
    Masson B; Montani D; Humbert M; Capuano V; Antigny F
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension.
    Santos-Gomes J; Le Ribeuz H; Brás-Silva C; Antigny F; Adão R
    Biomolecules; 2022 Mar; 12(4):. PubMed ID: 35454073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension.
    Antigny F; Hautefort A; Meloche J; Belacel-Ouari M; Manoury B; Rucker-Martin C; Péchoux C; Potus F; Nadeau V; Tremblay E; Ruffenach G; Bourgeois A; Dorfmüller P; Breuils-Bonnet S; Fadel E; Ranchoux B; Jourdon P; Girerd B; Montani D; Provencher S; Bonnet S; Simonneau G; Humbert M; Perros F
    Circulation; 2016 Apr; 133(14):1371-85. PubMed ID: 26912814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension.
    Le Ribeuz H; Capuano V; Girerd B; Humbert M; Montani D; Antigny F
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32882918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion channels as convergence points in the pathology of pulmonary arterial hypertension.
    Jouen-Tachoire TRH; Tucker SJ; Tammaro P
    Biochem Soc Trans; 2021 Aug; 49(4):1855-1865. PubMed ID: 34346486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channels and transporters as therapeutic targets in the pulmonary circulation.
    Olschewski A; Papp R; Nagaraj C; Olschewski H
    Pharmacol Ther; 2014 Dec; 144(3):349-68. PubMed ID: 25108211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pharmacological treatment of pulmonary arterial hypertension.
    Frumkin LR
    Pharmacol Rev; 2012 Jul; 64(3):583-620. PubMed ID: 22659328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium Channels as Therapeutic Targets in Pulmonary Arterial Hypertension.
    Redel-Traub G; Sampson KJ; Kass RS; Bohnen MS
    Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium channels in pulmonary arterial hypertension.
    Boucherat O; Chabot S; Antigny F; Perros F; Provencher S; Bonnet S
    Eur Respir J; 2015 Oct; 46(4):1167-77. PubMed ID: 26341985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelin antagonism in pulmonary arterial hypertension.
    Lee SH; Channick RN
    Semin Respir Crit Care Med; 2005 Aug; 26(4):402-8. PubMed ID: 16121317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension.
    Bonnet S; Archer SL
    Pharmacol Ther; 2007 Jul; 115(1):56-69. PubMed ID: 17583356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Impact of Heterozygous
    Bohnen MS; Roman-Campos D; Terrenoire C; Jnani J; Sampson KJ; Chung WK; Kass RS
    J Am Heart Assoc; 2017 Sep; 6(9):. PubMed ID: 28889099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pediatric pulmonary arterial hypertension: current and emerging therapeutic options.
    Oishi P; Datar SA; Fineman JR
    Expert Opin Pharmacother; 2011 Aug; 12(12):1845-64. PubMed ID: 21609302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ORAI Channels as Potential Therapeutic Targets in Pulmonary Hypertension.
    Rode B; Bailey MA; Marthan R; Beech DJ; Guibert C
    Physiology (Bethesda); 2018 Jul; 33(4):261-268. PubMed ID: 29897302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension.
    Moudgil R; Michelakis ED; Archer SL
    Microcirculation; 2006 Dec; 13(8):615-32. PubMed ID: 17085423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The current approach into signaling pathways in pulmonary arterial hypertension and their implication in novel therapeutic strategies.
    Jasińska-Stroschein M; Orszulak-Michalak D
    Pharmacol Rep; 2014 Aug; 66(4):552-64. PubMed ID: 24948054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient Receptor Potential Channel 4 Encodes a Vascular Permeability Defect and High-Frequency Ca(2+) Transients in Severe Pulmonary Arterial Hypertension.
    Francis M; Xu N; Zhou C; Stevens T
    Am J Pathol; 2016 Jun; 186(6):1701-9. PubMed ID: 27083517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery.
    Vaidya B; Gupta V
    J Control Release; 2015 Aug; 211():118-33. PubMed ID: 26036906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.