These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30322540)

  • 1. "Metal oxide -based heterostructures for gas sensors"- A review.
    Zappa D; Galstyan V; Kaur N; Munasinghe Arachchige HMM; Sisman O; Comini E
    Anal Chim Acta; 2018 Dec; 1039():1-23. PubMed ID: 30322540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Oxide Heterostructures for Improving Gas Sensing Properties: A Review.
    Meng FJ; Xin RF; Li SX
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Dimensional Nanostructured Oxide Chemoresistive Sensors.
    Kaur N; Singh M; Comini E
    Langmuir; 2020 Jun; 36(23):6326-6344. PubMed ID: 32453573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative Nanosensor for Disease Diagnosis.
    Kim SJ; Choi SJ; Jang JS; Cho HJ; Kim ID
    Acc Chem Res; 2017 Jul; 50(7):1587-1596. PubMed ID: 28481075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Heterojunctions of Core-Shell Heterostructures in Gas Sensing.
    Raza MH; Di Chio R; Movlaee K; Amsalem P; Koch N; Barsan N; Neri G; Pinna N
    ACS Appl Mater Interfaces; 2022 May; 14(19):22041-22052. PubMed ID: 35522904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Gas Sensors Studied at SENSOR Lab, Brescia (Italy): From Conventional to Energy-Efficient and Biocompatible Composite Structures.
    Galstyan V; Kaur N; Zappa D; Núñez-Carmona E; Sberveglieri V; Comini E
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31973066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Activated Metal Oxide Gas Sensors: A Review.
    Xu F; Ho HP
    Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal oxide nano-crystals for gas sensing.
    Comini E
    Anal Chim Acta; 2006 May; 568(1-2):28-40. PubMed ID: 17761243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties.
    Lin T; Lv X; Li S; Wang Q
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29189714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Morphology-Dependent Gas-Sensing Performances of Three-Dimensional SnO
    Li YX; Guo Z; Su Y; Jin XB; Tang XH; Huang JR; Huang XJ; Li MQ; Liu JH
    ACS Sens; 2017 Jan; 2(1):102-110. PubMed ID: 28722446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides.
    Joshi N; Hayasaka T; Liu Y; Liu H; Oliveira ON; Lin L
    Mikrochim Acta; 2018 Mar; 185(4):213. PubMed ID: 29594538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Hetero-Nanostructures on MoS
    Han Y; Huang D; Ma Y; He G; Hu J; Zhang J; Hu N; Su Y; Zhou Z; Zhang Y; Yang Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22640-22649. PubMed ID: 29896961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures.
    Li H; Wang X; Zhu X; Duan X; Pan A
    Chem Soc Rev; 2018 Oct; 47(20):7504-7521. PubMed ID: 30206582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Combination of Two-Dimensional Nanomaterials with Metal Oxide Nanoparticles for Gas Sensors: A Review.
    Li T; Yin W; Gao S; Sun Y; Xu P; Wu S; Kong H; Yang G; Wei G
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas-Sensing Performances of Metal Oxide Nanostructures for Detecting Dissolved Gases: A Mini Review.
    Guan W; Tang N; He K; Hu X; Li M; Li K
    Front Chem; 2020; 8():76. PubMed ID: 32154213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral and Vertical Two-Dimensional Layered Topological Insulator Heterostructures.
    Li Y; Zhang J; Zheng G; Sun Y; Hong SS; Xiong F; Wang S; Lee HR; Cui Y
    ACS Nano; 2015 Nov; 9(11):10916-21. PubMed ID: 26468661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity.
    Wu W; Zhang S; Ren F; Xiao X; Zhou J; Jiang C
    Nanoscale; 2011 Nov; 3(11):4676-84. PubMed ID: 21947413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of heteroepitaxy in different shapes of Au-CdSe metal-semiconductor hybrid nanostructures.
    Haldar KK; Pradhan N; Patra A
    Small; 2013 Oct; 9(20):3424-32. PubMed ID: 23666644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epitaxial core-shell and core-multishell nanowire heterostructures.
    Lauhon LJ; Gudiksen MS; Wang D; Lieber CM
    Nature; 2002 Nov; 420(6911):57-61. PubMed ID: 12422212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.