These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30322547)

  • 1. Flavanols react preferentially with quinones through an electron transfer reaction, stimulating rather than preventing wine browning.
    Ma L; Waterhouse AL
    Anal Chim Acta; 2018 Dec; 1039():162-171. PubMed ID: 30322547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of quinones reactions with wine nucleophiles by cyclic voltammetry.
    Oliveira CM; Barros AS; Ferreira AC; Silva AM
    Food Chem; 2016 Nov; 211():1-7. PubMed ID: 27283600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinones as Strecker degradation reagents in wine oxidation processes.
    Oliveira CM; Santos SA; Silvestre AJ; Barros AS; Ferreira AC; Silva AM
    Food Chem; 2017 Aug; 228():618-624. PubMed ID: 28317771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method to quantify quinone reaction rates with wine relevant nucleophiles: a key to the understanding of oxidative loss of varietal thiols.
    Nikolantonaki M; Waterhouse AL
    J Agric Food Chem; 2012 Aug; 60(34):8484-91. PubMed ID: 22860891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracing oxidation reaction pathways in wine using
    Ma L; Bueschl C; Schuhmacher R; Waterhouse AL
    Anal Chim Acta; 2019 Apr; 1054():74-83. PubMed ID: 30712595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones.
    Nikolantonaki M; Magiatis P; Waterhouse AL
    Food Chem; 2014 Nov; 163():61-7. PubMed ID: 24912696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of adducts between an odoriferous volatile thiol and oxidized grape phenolic compounds: kinetic study of adduct formation under chemical and enzymatic oxidation conditions.
    Nikolantonaki M; Jourdes M; Shinoda K; Teissedre PL; Quideau S; Darriet P
    J Agric Food Chem; 2012 Mar; 60(10):2647-56. PubMed ID: 22324817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method combining stable isotopic labeling and high-resolution mass spectrometry to trace the quinone reaction products in wines.
    Ji J; Liu X; Hu X; Chen F; Bueschl C; Schuhmacher R; Waterhouse AL; Ma L
    Food Chem; 2022 Jul; 383():132448. PubMed ID: 35183957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of ethyl radical quenching by phenolics and thiols in model wine.
    Kreitman GY; Laurie VF; Elias RJ
    J Agric Food Chem; 2013 Jan; 61(3):685-92. PubMed ID: 23289487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein engineering of cytochrome b562 for quinone binding and light-induced electron transfer.
    Hay S; Wallace BB; Smith TA; Ghiggino KP; Wydrzynski T
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17675-80. PubMed ID: 15585583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance liquid chromatography/electrospray ionization mass spectrometric characterization of new products formed by the reaction between flavanols and malvidin 3-glucoside in the presence of acetaldehyde.
    Sun B; Santos CP; Leandro MC; De Freitas V; Spranger MI
    Rapid Commun Mass Spectrom; 2007; 21(14):2227-36. PubMed ID: 17569097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Quinone-quinone and Quinone-catechol products using
    Geng Y; Xu Z; Yu Y; Yao J; Li W; Chen F; Hu X; Ji J; Ma L
    Food Res Int; 2023 Feb; 164():112397. PubMed ID: 36737980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphenol mediated non-enzymatic browning and its inhibition in apple juice.
    Xu Z; Yang Z; Ji J; Mou Y; Chen F; Xiao Z; Liao X; Hu X; Ma L
    Food Chem; 2023 Mar; 404(Pt A):134504. PubMed ID: 36228474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical oxidation of wine polyphenols in the presence of sulfur dioxide.
    Makhotkina O; Kilmartin PA
    J Agric Food Chem; 2013 Jun; 61(23):5573-81. PubMed ID: 23692398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of stereochemistry of antioxidants and flavonols on oxidation processes in a model wine system: ascorbic acid, erythorbic acid, +-catechin and (-)-epicatechin.
    Clark AC; Vestner J; Barril C; Maury C; Prenzler PD; Scollary GR
    J Agric Food Chem; 2010 Jan; 58(2):1004-11. PubMed ID: 20039675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of strecker aldehydes from polyphenol-derived quinones and alpha-amino acids in a nonenzymic model system.
    Rizzi GP
    J Agric Food Chem; 2006 Mar; 54(5):1893-7. PubMed ID: 16506850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-enzymatic browning induced by chlorogenic acid quinone mediated catechin oxidation.
    Liu X; Chen D; Yang Z; Chen F; Hu X; Xiao Z; Ji J; Ma L
    Food Res Int; 2022 Jun; 156():111297. PubMed ID: 35651058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strecker Aldehyde Formation in Wine: New Insights into the Role of Gallic Acid, Glucose, and Metals in Phenylacetaldehyde Formation.
    Monforte AR; Martins SIFS; Silva Ferreira AC
    J Agric Food Chem; 2018 Mar; 66(10):2459-2466. PubMed ID: 28238260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Phenolic Compounds in Strecker Aldehyde Formation in Wine Model Systems: Target and Untargeted Analysis.
    Monforte AR; Martins SIFS; Silva Ferreira AC
    J Agric Food Chem; 2020 Sep; 68(38):10281-10286. PubMed ID: 31274314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic and kinetic properties of a red wine pigment: catechin-(4,8)-malvidin-3-O-glucoside.
    Nave F; Petrov V; Pina F; Teixeira N; Mateus N; de Freitas V
    J Phys Chem B; 2010 Oct; 114(42):13487-96. PubMed ID: 20925351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.