These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30322908)

  • 1. Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans.
    Sumner CJ; Wells TT; Bergevin C; Sollini J; Kreft HA; Palmer AR; Oxenham AJ; Shera CA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11322-11326. PubMed ID: 30322908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Musical experience sharpens human cochlear tuning.
    Bidelman GM; Nelms C; Bhagat SP
    Hear Res; 2016 May; 335():40-46. PubMed ID: 26900073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans.
    Joris PX; Bergevin C; Kalluri R; Mc Laughlin M; Michelet P; van der Heijden M; Shera CA
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17516-20. PubMed ID: 21987783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements.
    Shera CA; Guinan JJ; Oxenham AJ
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):3318-23. PubMed ID: 11867706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.
    Baiduc RR; Lee J; Dhar S
    J Acoust Soc Am; 2014 Jan; 135(1):300-14. PubMed ID: 24437770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression estimates using behavioral and otoacoustic emission measures.
    Williams EJ; Bacon SP
    Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the controversy about the sharpness of human cochlear tuning.
    Lopez-Poveda EA; Eustaquio-Martin A
    J Assoc Res Otolaryngol; 2013 Oct; 14(5):673-86. PubMed ID: 23690279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Otoacoustic estimation of cochlear tuning: validation in the chinchilla.
    Shera CA; Guinan JJ; Oxenham AJ
    J Assoc Res Otolaryngol; 2010 Sep; 11(3):343-65. PubMed ID: 20440634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bandpass Shape of Distortion-Product Otoacoustic Emission Ratio Functions Reflects Cochlear Frequency Tuning in Normal-Hearing Mice.
    Dewey JB; Shera CA
    J Assoc Res Otolaryngol; 2023 Jun; 24(3):305-324. PubMed ID: 37072566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency selectivity in monkey auditory nerve studied with suprathreshold multicomponent stimuli.
    Joris PX; Verschooten E; Mc Laughlin M; Versteegh C; van der Heijden M
    Hear Res; 2024 Mar; 443():108964. PubMed ID: 38277882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions.
    Bentsen T; Harte JM; Dau T
    J Acoust Soc Am; 2011 Jun; 129(6):3797-807. PubMed ID: 21682403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrelations between psychoacoustical tuning curves and spontaneous and evoked otoacoustic emissions.
    Micheyl C; Collet L
    Scand Audiol; 1994; 23(3):171-8. PubMed ID: 7997834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear, brainstem, and psychophysical responses show spectrotemporal tradeoff in human auditory processing.
    Bidelman GM; Bhagat SP
    Neuroreport; 2017 Jan; 28(1):17-22. PubMed ID: 27893606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners.
    Charaziak KK; Souza PE; Siegel JH
    Int J Audiol; 2015 Feb; 54(2):96-105. PubMed ID: 25290042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An objective assessment method for frequency selectivity of the human auditory system.
    Gong Q; Wang Y; Xian M
    Biomed Eng Online; 2014 Dec; 13():171. PubMed ID: 25522838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interference effects and phase sensitivity in hearing.
    Moore BC
    Philos Trans A Math Phys Eng Sci; 2002 May; 360(1794):833-58. PubMed ID: 12804282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.