These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30322934)

  • 1. In operando plasmonic monitoring of electrochemical evolution of lithium metal.
    Jin Y; Zhou L; Yu J; Liang J; Cai W; Zhang H; Zhu S; Zhu J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11168-11173. PubMed ID: 30322934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operando monitoring the lithium spatial distribution of lithium metal anodes.
    Lv S; Verhallen T; Vasileiadis A; Ooms F; Xu Y; Li Z; Li Z; Wagemaker M
    Nat Commun; 2018 Jun; 9(1):2152. PubMed ID: 29858568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Visualizing Nucleation and Growth of Electrodes for Post-Lithium-Ion Batteries.
    Um JH; Kim SJ; Hyun JH; Kim M; Lee SH; Yu SH
    Acc Chem Res; 2023 Feb; 56(4):440-451. PubMed ID: 36689689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy.
    Wood KN; Kazyak E; Chadwick AF; Chen KH; Zhang JG; Thornton K; Dasgupta NP
    ACS Cent Sci; 2016 Nov; 2(11):790-801. PubMed ID: 27924307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical Dynamic Switching of Magnetic Plasmon Resonance Based on Selective Lithium Deposition.
    Jin Y; Liang J; Wu S; Zhang Y; Zhou L; Wang Q; Liu H; Zhu J
    Adv Mater; 2020 Oct; 32(42):e2000058. PubMed ID: 32930451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operando NMR characterization of a metal-air battery using a double-compartment cell design.
    Gauthier M; Nguyen MH; Blondeau L; Foy E; Wong A
    Solid State Nucl Magn Reson; 2021 Jun; 113():101731. PubMed ID: 33823328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Surface Plasmon Resonance Spectroscopy for Investigation of the Initial Process of Lithium Metal Deposition.
    Kitta M; Murai K; Yoshii K; Sano H
    J Am Chem Soc; 2021 Jul; 143(29):11160-11170. PubMed ID: 34260226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the dynamic evolution of lithium dendrites: a review of in situ/operando characterization for lithium metallic batteries.
    Ma Y; Li S; Wei B
    Nanoscale; 2019 Nov; 11(43):20429-20436. PubMed ID: 31647079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale characterization of a lithium/sulfur battery by coupling operando X-ray tomography and spatially-resolved diffraction.
    Tonin G; Vaughan G; Bouchet R; Alloin F; Di Michiel M; Boutafa L; Colin JF; Barchasz C
    Sci Rep; 2017 Jun; 7(1):2755. PubMed ID: 28584237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Operando Monitoring of the Pore Dynamics in Ordered Mesoporous Electrode Materials by Small Angle X-ray Scattering.
    Park GO; Yoon J; Park E; Park SB; Kim H; Kim KH; Jin X; Shin TJ; Kim H; Yoon WS; Kim JM
    ACS Nano; 2015 May; 9(5):5470-7. PubMed ID: 25869353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-run in operando NMR to investigate the evolution and degradation of battery cells.
    Kayser SA; Mester A; Mertens A; Jakes P; Eichel RA; Granwehr J
    Phys Chem Chem Phys; 2018 May; 20(20):13765-13776. PubMed ID: 29740646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ analytical techniques for battery interface analysis.
    Tripathi AM; Su WN; Hwang BJ
    Chem Soc Rev; 2018 Feb; 47(3):736-851. PubMed ID: 29308803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Thermal Interface Resistance for Noninvasive Operando Mapping of Buried Interfacial Lithium Morphology in Solid-State Batteries.
    Chalise D; Jonson R; Schaadt J; Barai P; Zeng Y; Kaur S; Lubner SD; Srinivasan V; Tucker MC; Prasher RS
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17344-17352. PubMed ID: 36951807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research.
    Liu D; Shadike Z; Lin R; Qian K; Li H; Li K; Wang S; Yu Q; Liu M; Ganapathy S; Qin X; Yang QH; Wagemaker M; Kang F; Yang XQ; Li B
    Adv Mater; 2019 Jul; 31(28):e1806620. PubMed ID: 31099081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operando Decoding of Surface Strain in Anode-Free Lithium Metal Batteries via Optical Fiber Sensor.
    Li Y; Zhang Y; Li Z; Yan Z; Xiao X; Liu X; Chen J; Shen Y; Sun Q; Huang Y
    Adv Sci (Weinh); 2022 Sep; 9(26):e2203247. PubMed ID: 35863904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Quest for Polysulfides in Lithium-Sulfur Battery Electrolytes: An Operando Confocal Raman Spectroscopy Study.
    Hannauer J; Scheers J; Fullenwarth J; Fraisse B; Stievano L; Johansson P
    Chemphyschem; 2015 Sep; 16(13):2755-2759. PubMed ID: 26227956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanodiamonds suppress the growth of lithium dendrites.
    Cheng XB; Zhao MQ; Chen C; Pentecost A; Maleski K; Mathis T; Zhang XQ; Zhang Q; Jiang J; Gogotsi Y
    Nat Commun; 2017 Aug; 8(1):336. PubMed ID: 28839134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operando NMR of NMC811/Graphite Lithium-Ion Batteries: Structure, Dynamics, and Lithium Metal Deposition.
    Märker K; Xu C; Grey CP
    J Am Chem Soc; 2020 Oct; 142(41):17447-17456. PubMed ID: 32960049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.