These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 3032294)
1. Fluorescence quenching dynamics of tryptophan in proteins. Effect of internal rotation under potential barrier. Tanaka F; Mataga N Biophys J; 1987 Mar; 51(3):487-95. PubMed ID: 3032294 [TBL] [Abstract][Full Text] [Related]
2. Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryptophan residue (Trp-59). Vincent M; Brochon JC; Merola F; Jordi W; Gallay J Biochemistry; 1988 Nov; 27(24):8752-61. PubMed ID: 2853969 [TBL] [Abstract][Full Text] [Related]
3. Analysis of internal motion of single tryptophan in Streptomyces subtilisin inhibitor from its picosecond time-resolved fluorescence. Tanaka F; Tamai N; Mataga N; Tonomura B; Hiromi K Biophys J; 1994 Aug; 67(2):874-80. PubMed ID: 7948700 [TBL] [Abstract][Full Text] [Related]
4. Dynamic depolarization of interacting fluorophores. Effect of internal rotation and energy transfer. Tanaka F; Mataga N Biophys J; 1982 Aug; 39(2):129-40. PubMed ID: 7115879 [TBL] [Abstract][Full Text] [Related]
5. Constrained analysis of fluorescence anisotropy decay:application to experimental protein dynamics. Feinstein E; Deikus G; Rusinova E; Rachofsky EL; Ross JB; Laws WR Biophys J; 2003 Jan; 84(1):599-611. PubMed ID: 12524313 [TBL] [Abstract][Full Text] [Related]
6. Ionization potentials of fluoroindoles and the origin of nonexponential tryptophan fluorescence decay in proteins. Liu T; Callis PR; Hesp BH; de Groot M; Buma WJ; Broos J J Am Chem Soc; 2005 Mar; 127(11):4104-13. PubMed ID: 15771548 [TBL] [Abstract][Full Text] [Related]
7. The interactions of horse heart apocytochrome c with phospholipid vesicles and surfactant micelles: time-resolved fluorescence study of the single tryptophan residue (Trp-59). Vincent M; Gallay J Eur Biophys J; 1991; 20(3):183-91. PubMed ID: 1660398 [TBL] [Abstract][Full Text] [Related]
8. The effects of ligands on the conformation of phosphoglycerate kinase: fluorescence anisotropy decay and theoretical interpretation. Mouawad L; Desmadril M; Perahia D; Yon JM; Brochon JC Biopolymers; 1990; 30(13-14):1151-60. PubMed ID: 2085655 [TBL] [Abstract][Full Text] [Related]
9. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609 [TBL] [Abstract][Full Text] [Related]
11. Application of a reference convolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics. Vos K; van Hoek A; Visser AJ Eur J Biochem; 1987 May; 165(1):55-63. PubMed ID: 3569297 [TBL] [Abstract][Full Text] [Related]
12. Environmental modulation of M13 coat protein tryptophan fluorescence dynamics. Johnson ID; Hudson BS Biochemistry; 1989 Jul; 28(15):6392-400. PubMed ID: 2675970 [TBL] [Abstract][Full Text] [Related]
13. Internal motion of lysozyme studied by time-resolved fluorescence depolarization of tryptophan residues. Nishimoto E; Yamashita S; Szabo AG; Imoto T Biochemistry; 1998 Apr; 37(16):5599-607. PubMed ID: 9548945 [TBL] [Abstract][Full Text] [Related]
14. Picosecond fluorescence decay of tryptophans in myoglobin. Hochstrasser RM; Negus DK Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4399-403. PubMed ID: 6589602 [TBL] [Abstract][Full Text] [Related]
15. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies. Lakowicz JR; Freshwater G; Weber G Biophys J; 1980 Oct; 32(1):591-601. PubMed ID: 7248463 [TBL] [Abstract][Full Text] [Related]
16. Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. A new approximate solution of the rotational diffusion equation. van der Meer W; Pottel H; Herreman W; Ameloot M; Hendrickx H; Schröder H Biophys J; 1984 Oct; 46(4):515-23. PubMed ID: 6498269 [TBL] [Abstract][Full Text] [Related]
17. Quenching-resolved emission anisotropy studies with single and multitryptophan-containing proteins. Eftink M Biophys J; 1983 Sep; 43(3):323-34. PubMed ID: 6354292 [TBL] [Abstract][Full Text] [Related]
18. Further study on the spontaneous partial folding of chicken heart apocytochrome c. Tong J; Han X; Yang F Biochem Mol Biol Int; 1994 Dec; 34(6):1235-43. PubMed ID: 7696996 [TBL] [Abstract][Full Text] [Related]
19. Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24). Ross JB; Rousslang KW; Brand L Biochemistry; 1981 Jul; 20(15):4361-9. PubMed ID: 6269589 [TBL] [Abstract][Full Text] [Related]
20. Site-specific tryptophan dynamics in class A amphipathic helical peptides at a phospholipid bilayer interface. Clayton AH; Sawyer WH Biophys J; 2000 Aug; 79(2):1066-73. PubMed ID: 10920036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]