These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 30323214)

  • 1. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RBPPred: predicting RNA-binding proteins from sequence using SVM.
    Zhang X; Liu S
    Bioinformatics; 2017 Mar; 33(6):854-862. PubMed ID: 27993780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. econvRBP: Improved ensemble convolutional neural networks for RNA binding protein prediction directly from sequence.
    Zhao Y; Du X
    Methods; 2020 Oct; 181-182():15-23. PubMed ID: 31513916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seq-RBPPred: Predicting RNA-Binding Proteins from Sequence.
    Yan Y; Li W; Wang S; Huang T
    ACS Omega; 2024 Mar; 9(11):12734-12742. PubMed ID: 38524500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences.
    Hu S; Ma R; Wang H
    PLoS One; 2019; 14(11):e0225317. PubMed ID: 31725778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AIRBP: Accurate identification of RNA-binding proteins using machine learning techniques.
    Mishra A; Khanal R; Kabir WU; Hoque T
    Artif Intell Med; 2021 Mar; 113():102034. PubMed ID: 33685590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iDRBP_MMC: Identifying DNA-Binding Proteins and RNA-Binding Proteins Based on Multi-Label Learning Model and Motif-Based Convolutional Neural Network.
    Zhang J; Chen Q; Liu B
    J Mol Biol; 2020 Nov; 432(22):5860-5875. PubMed ID: 32920048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network.
    Liu L; Wei Y; Tan Z; Zhang Q; Sun J; Zhao Q
    Interdiscip Sci; 2024 Sep; 16(3):635-648. PubMed ID: 38381315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles.
    Le NQK; Huynh TT; Yapp EKY; Yeh HY
    Comput Methods Programs Biomed; 2019 Aug; 177():81-88. PubMed ID: 31319963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.