BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 30323265)

  • 41. Deconstructing
    Schöne C; Poehlein A; Jehmlich N; Adlung N; Daniel R; von Bergen M; Scheller S; Rother M
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34992140
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Growth of sulfate-reducing bacteria and methanogenic archaea with methylated sulfur compounds: a commentary on the thermodynamic aspects.
    Scholten JC; Murrell JC; Kelly DP
    Arch Microbiol; 2003; 179(2):135-44. PubMed ID: 12560992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of microbial community composition in thermophilic methane-producing incubation of production water from a high-temperature oil reservoir.
    Zhou F; Mbadinga SM; Liu JF; Gu JD; Mu BZ
    Environ Technol; 2013; 34(17-20):2681-9. PubMed ID: 24527630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment.
    Jagersma GC; Meulepas RJ; Heikamp-de Jong I; Gieteling J; Klimiuk A; Schouten S; Damsté JS; Lens PN; Stams AJ
    Environ Microbiol; 2009 Dec; 11(12):3223-32. PubMed ID: 19703218
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Archaeal community structure and pathway of methane formation on rice roots.
    Chin KJ; Lueders T; Friedrich MW; Klose M; Conrad R
    Microb Ecol; 2004 Jan; 47(1):59-67. PubMed ID: 15259270
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate.
    Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F
    Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil.
    Schmidt O; Horn MA; Kolb S; Drake HL
    Environ Microbiol; 2015 Mar; 17(3):720-34. PubMed ID: 24813682
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methyl fluoride affects methanogenesis rather than community composition of methanogenic archaea in a rice field soil.
    Daebeler A; Gansen M; Frenzel P
    PLoS One; 2013; 8(1):e53656. PubMed ID: 23341965
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A contribution of hydrogenotrophic methanogenesis to the biogenic coal bed methane reserves of Southern Qinshui Basin, China.
    Guo H; Yu Z; Thompson IP; Zhang H
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9083-93. PubMed ID: 25012785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source.
    Timmers PH; Suarez-Zuluaga DA; van Rossem M; Diender M; Stams AJ; Plugge CM
    ISME J; 2016 Jun; 10(6):1400-12. PubMed ID: 26636551
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics of the methanogenic archaea in tropical estuarine sediments.
    Torres-Alvarado Mdel R; Fernández FJ; Ramírez Vives F; Varona-Cordero F
    Archaea; 2013; 2013():582646. PubMed ID: 23401664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methanogenic archaea in subsurface coal seams are biogeographically distinct: an analysis of metagenomically-derived mcrA sequences.
    Campbell BC; Greenfield P; Gong S; Barnhart EP; Midgley DJ; Paulsen IT; George SC
    Environ Microbiol; 2022 Sep; 24(9):4065-4078. PubMed ID: 35437913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs.
    Mayumi D; Dolfing J; Sakata S; Maeda H; Miyagawa Y; Ikarashi M; Tamaki H; Takeuchi M; Nakatsu CH; Kamagata Y
    Nat Commun; 2013; 4():1998. PubMed ID: 23759740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methyl-compounds driven benthic carbon cycling in the sulfate-reducing sediments of South China Sea.
    Xu L; Zhuang GC; Montgomery A; Liang Q; Joye SB; Wang F
    Environ Microbiol; 2021 Feb; 23(2):641-651. PubMed ID: 32506654
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane.
    Singh DN; Kumar A; Sarbhai MP; Tripathi AK
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1337-50. PubMed ID: 22202965
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anaerobic microbial communities and their potential for bioenergy production in heavily biodegraded petroleum reservoirs.
    de Rezende JR; Oldenburg TBP; Korin T; Richardson WDL; Fustic M; Aitken CM; Bowler BFJ; Sherry A; Grigoryan A; Voordouw G; Larter SR; Head IM; Hubert CRJ
    Environ Microbiol; 2020 Aug; 22(8):3049-3065. PubMed ID: 32216020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aromatic compound-degrading taxa in an anoxic coal seam microbiome from the Surat Basin, Australia.
    C Campbell B; Gong S; Greenfield P; J Midgley D; T Paulsen I; C George S
    FEMS Microbiol Ecol; 2021 Apr; 97(5):. PubMed ID: 33791788
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Archaea-specific
    Gupta D; Shalvarjian KE; Nayak DD
    Elife; 2022 Apr; 11():. PubMed ID: 35380107
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea.
    Lazar CS; John Parkes R; Cragg BA; L'Haridon S; Toffin L
    FEMS Microbiol Ecol; 2012 Jul; 81(1):243-54. PubMed ID: 22458514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anaerobic microbiota: spatial-temporal changes in the sediment of a tropical coastal lagoon with ephemeral inlet in the Gulf of Mexico.
    Torres-Alvarado MR; Calva-Benítez LG; Álvarez-Hernández S; Trejo-Aguilar G
    Rev Biol Trop; 2016 Dec; 64(4):1759-70. PubMed ID: 29465951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.