These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 3032350)

  • 1. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin.
    Freeman AS; Bunney BS
    Brain Res; 1987 Mar; 405(1):46-55. PubMed ID: 3032350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreversible receptor inactivation reveals differences in dopamine receptor reserve between A9 and A10 dopamine systems: an electrophysiological analysis.
    Cox RF; Waszczak BL
    Brain Res; 1990 Nov; 534(1-2):273-82. PubMed ID: 1981482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons.
    Hand TH; Hu XT; Wang RY
    Brain Res; 1987 Jul; 415(2):257-69. PubMed ID: 3607497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine.
    Mereu G; Yoon KW; Boi V; Gessa GL; Naes L; Westfall TC
    Eur J Pharmacol; 1987 Sep; 141(3):395-9. PubMed ID: 3666033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological effects of cholecystokinin octapeptide on identified rat nigrostriatal dopaminergic neurons.
    Freeman AS; Chiodo LA
    Brain Res; 1988 Jan; 439(1-2):266-74. PubMed ID: 3359189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 5-HT3 receptor antagonists LY 277359 and granisetron potentiate the suppressant action of apomorphine on the basal firing rate of ventral tegmental dopamine cells.
    Minabe Y; Ashby CR; Schwartz JE; Wang RY
    Eur J Pharmacol; 1991 Dec; 209(3):143-50. PubMed ID: 1665793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Firing patterns of midbrain dopamine neurons: differences between A9 and A10 cells.
    Grenhoff J; Ugedo L; Svensson TH
    Acta Physiol Scand; 1988 Sep; 134(1):127-32. PubMed ID: 3239415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the effects of the cholecystokinin-B receptor antagonist, PD 134308, and the cholecystokinin-A receptor antagonist, L-364,718, on dopamine neuronal activity in the substantia nigra and ventral tegmental area.
    Meltzer LT; Christoffersen CL; Serpa KA; Razmpour A
    Synapse; 1993 Feb; 13(2):117-22. PubMed ID: 8446920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons.
    Rasmussen K; Czachura JF; Stockton ME; Howbert JJ
    J Pharmacol Exp Ther; 1993 Jan; 264(1):480-8. PubMed ID: 8423546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The depletion of brain serotonin levels by para-chlorophenylalanine administration significantly alters the activity of midbrain dopamine cells in rats: an extracellular single cell recording study.
    Minabe Y; Emori K; Ashby CR
    Synapse; 1996 Jan; 22(1):46-53. PubMed ID: 8822477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons.
    Chiodo LA; Bunney BS
    J Neurosci; 1983 Aug; 3(8):1607-19. PubMed ID: 6135762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the action of the stereoisomers of the psychostimulant 4-methylaminorex (4-MAX) on midbrain dopamine cells in the rat: an extracellular single unit study.
    Ashby CR; Pan H; Minabe Y; Toor A; Fishkin L; Wang RY
    Synapse; 1995 Aug; 20(4):351-61. PubMed ID: 7482294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine agonists at repeated "autoreceptor-selective" doses: effects upon the sensitivity of A10 dopamine autoreceptors.
    Jeziorski M; White FJ
    Synapse; 1989; 4(4):267-80. PubMed ID: 2603146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphine-induced activation of A10 dopamine neurons in the rat.
    Gysling K; Wang RY
    Brain Res; 1983 Oct; 277(1):119-27. PubMed ID: 6315137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological effects of BMY 14802, a new potential antipsychotic drug, on midbrain dopamine neurons in the rat: acute and chronic studies.
    Wachtel SR; White FJ
    J Pharmacol Exp Ther; 1988 Jan; 244(1):410-6. PubMed ID: 2891845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine.
    Matthews RT; German DC
    Neuroscience; 1984 Mar; 11(3):617-25. PubMed ID: 6717805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parkinsonian motor deficits are reflected by proportional A9/A10 dopamine neuron degeneration in the rat.
    Moore AE; Cicchetti F; Hennen J; Isacson O
    Exp Neurol; 2001 Dec; 172(2):363-76. PubMed ID: 11716560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute and subchronic effects of Rimcazole (BW 234U), a potential antipsychotic drug, on A9 and A10 dopamine neurons in the rat.
    Piontek JA; Wang RY
    Life Sci; 1986 Aug; 39(7):651-8. PubMed ID: 2874468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological evidence for A10 dopamine autoreceptor subsensitivity following chronic D-amphetamine treatment.
    White FJ; Wang RY
    Brain Res; 1984 Sep; 309(2):283-92. PubMed ID: 6478223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute and chronic administration of the selective 5-HT1A receptor antagonist WAY-405 significantly alters the activity of midbrain dopamine neurons in rats: an in vivo electrophysiological study.
    Minabe Y; Schechter L; Hashimoto K; Shirayama Y; Ashby CR
    Synapse; 2003 Dec; 50(3):181-90. PubMed ID: 14515335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.