These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30323845)

  • 1. Environment-dependent attack rates of cryptic and aposematic butterflies.
    Seymoure BM; Raymundo A; McGraw KJ; Owen McMillan W; Rutowski RL
    Curr Zool; 2018 Oct; 64(5):663-669. PubMed ID: 30323845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does spatial variation in predation pressure modulate selection for aposematism?
    Aluthwattha ST; Harrison RD; Ranawana KB; Xu C; Lai R; Chen J
    Ecol Evol; 2017 Sep; 7(18):7560-7572. PubMed ID: 28944039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predation, thermoregulation, and wing color in pierid butterflies.
    Kingsolver JG
    Oecologia; 1987 Sep; 73(2):301-306. PubMed ID: 28312302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern variation is linked to anti-predator coloration in butterfly larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Proc Biol Sci; 2023 Jun; 290(2001):20230811. PubMed ID: 37357867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingid caterpillars conspicuous patches do not function as distractive marks or warning against predators.
    Barrone J; Vidal MC; Stevenson R
    Ecol Evol; 2023 Jul; 13(7):e10334. PubMed ID: 37492454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The function of body coloration of the hai coral snake
    Mochida K; Zhang WY; Toda M
    Zool Stud; 2015; 54():e33. PubMed ID: 31966120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avian predators attack aposematic prey more forcefully when they are part of an aggregation.
    Skelhorn J; Ruxton GD
    Biol Lett; 2006 Dec; 2(4):488-90. PubMed ID: 17148269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditions for the spread of conspicuous warning signals: a numerical model with novel insights.
    Puurtinen M; Kaitala V
    Evolution; 2006 Nov; 60(11):2246-56. PubMed ID: 17236418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the effects of species traits on predation risk in nature: A comparative study of butterfly wing damage.
    Molleman F; Javoiš J; Davis RB; Whitaker MRL; Tammaru T; Prinzing A; Õunap E; Wahlberg N; Kodandaramaiah U; Aduse-Poku K; Kaasik A; Carey JR
    J Anim Ecol; 2020 Mar; 89(3):716-729. PubMed ID: 31693172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth.
    Honma A; Mappes J; Valkonen JK
    Ecol Evol; 2015 Nov; 5(21):4863-74. PubMed ID: 26640666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential detectability of polymorphic warning signals under varying light environments.
    Rojas B; Rautiala P; Mappes J
    Behav Processes; 2014 Nov; 109 Pt B():164-72. PubMed ID: 25158931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?
    Llaurens V; Joron M; Théry M
    J Evol Biol; 2014 Mar; 27(3):531-40. PubMed ID: 24444083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptic female Strawberry poison frogs experience elevated predation risk when associating with an aposematic partner.
    Segami Marzal JC; Rudh A; Rogell B; Ödeen A; Løvlie H; Rosher C; Qvarnström A
    Ecol Evol; 2017 Jan; 7(2):744-750. PubMed ID: 28116068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity in warning coloration: selective paradox or the norm?
    Briolat ES; Burdfield-Steel ER; Paul SC; Rönkä KH; Seymoure BM; Stankowich T; Stuckert AMM
    Biol Rev Camb Philos Soc; 2019 Apr; 94(2):388-414. PubMed ID: 30152037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of ontogenic change in color defenses of swallowtail butterflies.
    Gaitonde N; Joshi J; Kunte K
    Ecol Evol; 2018 Oct; 8(19):9751-9763. PubMed ID: 30386572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why has transparency evolved in aposematic butterflies? Insights from the largest radiation of aposematic butterflies, the Ithomiini.
    McClure M; Clerc C; Desbois C; Meichanetzoglou A; Cau M; Bastin-Héline L; Bacigalupo J; Houssin C; Pinna C; Nay B; Llaurens V; Berthier S; Andraud C; Gomez D; Elias M
    Proc Biol Sci; 2019 Apr; 286(1901):20182769. PubMed ID: 30991931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warning Coloration, Body Size, and the Evolution of Gregarious Behavior in Butterfly Larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Am Nat; 2023 Jul; 202(1):64-77. PubMed ID: 37384762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EVOLUTION OF GREGARIOUSNESS IN APOSEMATIC BUTTERFLY LARVAE: A PHYLOGENETIC ANALYSIS.
    Sillén-Tullberg B
    Evolution; 1988 Mar; 42(2):293-305. PubMed ID: 28567849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predator experience on cryptic prey affects the survival of conspicuous aposematic prey.
    Lindström L; Alatalo RV; Lyytinen A; Mappes J
    Proc Biol Sci; 2001 Feb; 268(1465):357-61. PubMed ID: 11270431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection for cryptic coloration in a visually heterogeneous habitat.
    Merilaita S; Lyytinen A; Mappes J
    Proc Biol Sci; 2001 Sep; 268(1479):1925-9. PubMed ID: 11564349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.