These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics. Zhao Y; Houston ZH; Simpson JD; Chen L; Fletcher NL; Fuchs AV; Blakey I; Thurecht KJ Mol Pharm; 2017 Oct; 14(10):3539-3549. PubMed ID: 28880092 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Polymeric Nanomedicines Targeted to PSMA: Effect of Ligand on Targeting Efficiency. Fuchs AV; Tse BW; Pearce AK; Yeh MC; Fletcher NL; Huang SS; Heston WD; Whittaker AK; Russell PJ; Thurecht KJ Biomacromolecules; 2015 Oct; 16(10):3235-47. PubMed ID: 26335533 [TBL] [Abstract][Full Text] [Related]
4. Targeting Nanomedicines to Prostate Cancer: Evaluation of Specificity of Ligands to Two Different Receptors In Vivo. Pearce AK; Fuchs AV; Fletcher NL; Thurecht KJ Pharm Res; 2016 Oct; 33(10):2388-99. PubMed ID: 27225496 [TBL] [Abstract][Full Text] [Related]
5. Aptamers and their applications in nanomedicine. Sun H; Zu Y Small; 2015 May; 11(20):2352-64. PubMed ID: 25677591 [TBL] [Abstract][Full Text] [Related]
6. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. van der Meel R; Vehmeijer LJ; Kok RJ; Storm G; van Gaal EV Adv Drug Deliv Rev; 2013 Oct; 65(10):1284-98. PubMed ID: 24018362 [TBL] [Abstract][Full Text] [Related]
7. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Lozano N; Al-Ahmady ZS; Beziere NS; Ntziachristos V; Kostarelos K Int J Pharm; 2015 Mar; 482(1-2):2-10. PubMed ID: 25445515 [TBL] [Abstract][Full Text] [Related]
8. Improvement in the drug delivery and anti-tumor efficacy of PEGylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model. Moosavian SA; Abnous K; Badiee A; Jaafari MR Colloids Surf B Biointerfaces; 2016 Mar; 139():228-36. PubMed ID: 26722819 [TBL] [Abstract][Full Text] [Related]
9. Polymeric nanomedicine for tumor-targeted combination therapy to elicit synergistic genotoxicity against prostate cancer. Yang Q; Yang Y; Li L; Sun W; Zhu X; Huang Y ACS Appl Mater Interfaces; 2015 Apr; 7(12):6661-73. PubMed ID: 25775367 [TBL] [Abstract][Full Text] [Related]
10. Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. Markovsky E; Baabur-Cohen H; Satchi-Fainaro R J Control Release; 2014 Aug; 187():145-57. PubMed ID: 24862318 [TBL] [Abstract][Full Text] [Related]
11. Polymeric nanotheranostics for real-time non-invasive optical imaging of breast cancer progression and drug release. Ferber S; Baabur-Cohen H; Blau R; Epshtein Y; Kisin-Finfer E; Redy O; Shabat D; Satchi-Fainaro R Cancer Lett; 2014 Sep; 352(1):81-9. PubMed ID: 24614283 [TBL] [Abstract][Full Text] [Related]
12. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Feng Q; Zhang Y; Zhang W; Shan X; Yuan Y; Zhang H; Hou L; Zhang Z Acta Biomater; 2016 Jul; 38():129-42. PubMed ID: 27090593 [TBL] [Abstract][Full Text] [Related]
13. Osteopontin-targeted probe detects orthotopic breast cancers using optoacoustic imaging. Samykutty A; Thomas A; McNally M; Chiba A; McNally LR Biotech Histochem; 2018; 93(8):608-614. PubMed ID: 30260254 [TBL] [Abstract][Full Text] [Related]
14. Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice. Zhang T; Prasad P; Cai P; He C; Shan D; Rauth AM; Wu XY Acta Pharmacol Sin; 2017 Jun; 38(6):835-847. PubMed ID: 28216624 [TBL] [Abstract][Full Text] [Related]
15. Design and In Vitro Evaluation of Bispecific Complexes and Drug Conjugates of Anticancer Peptide, LyP-1 in Human Breast Cancer. Timur SS; Bhattarai P; Gürsoy RN; Vural İ; Khaw BA Pharm Res; 2017 Feb; 34(2):352-364. PubMed ID: 27896591 [TBL] [Abstract][Full Text] [Related]
16. Targeting Acidity in Pancreatic Adenocarcinoma: Multispectral Optoacoustic Tomography Detects pH-Low Insertion Peptide Probes In Vivo. Kimbrough CW; Khanal A; Zeiderman M; Khanal BR; Burton NC; McMasters KM; Vickers SM; Grizzle WE; McNally LR Clin Cancer Res; 2015 Oct; 21(20):4576-85. PubMed ID: 26124201 [TBL] [Abstract][Full Text] [Related]
17. Tumor targeting efficiency of bare nanoparticles does not mean the efficacy of loaded anticancer drugs: importance of radionuclide imaging for optimization of highly selective tumor targeting polymeric nanoparticles with or without drug. Lee BS; Park K; Park S; Kim GC; Kim HJ; Lee S; Kil H; Oh SJ; Chi D; Kim K; Choi K; Kwon IC; Kim SY J Control Release; 2010 Oct; 147(2):253-60. PubMed ID: 20624433 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of linear versus star-like polymer anti-cancer nanomedicines in mouse models. Kostka L; Kotrchová L; Randárová E; Ferreira CA; Malátová I; Lee HJ; Olson AP; Engle JW; Kovář M; Cai W; Šírová M; Etrych T J Control Release; 2023 Jan; 353():549-562. PubMed ID: 36470330 [TBL] [Abstract][Full Text] [Related]
19. Retro-inverso d-peptide-modified hyaluronic acid/bioreducible hyperbranched poly(amido amine)/pDNA core-shell ternary nanoparticles for the dual-targeted delivery of short hairpin RNA-encoding plasmids. Gu J; Chen X; Fang X; Sha X Acta Biomater; 2017 Jul; 57():156-169. PubMed ID: 28442415 [TBL] [Abstract][Full Text] [Related]
20. Peptide modified polymeric micelles specific for breast cancer cells. Mathews AS; Ahmed S; Shahin M; Lavasanifar A; Kaur K Bioconjug Chem; 2013 Apr; 24(4):560-70. PubMed ID: 23514428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]