These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 3032448)

  • 61. The mechanism of transposition of bacteriophage mu.
    Mizuuchi K; Mizuuchi M; Craigie R
    Cold Spring Harb Symp Quant Biol; 1984; 49():835-8. PubMed ID: 6099260
    [No Abstract]   [Full Text] [Related]  

  • 62. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis.
    Kruklitis R; Welty DJ; Nakai H
    EMBO J; 1996 Feb; 15(4):935-44. PubMed ID: 8631314
    [TBL] [Abstract][Full Text] [Related]  

  • 63. B protein of bacteriophage mu is an ATPase that preferentially stimulates intermolecular DNA strand transfer.
    Maxwell A; Craigie R; Mizuuchi K
    Proc Natl Acad Sci U S A; 1987 Feb; 84(3):699-703. PubMed ID: 2949325
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism.
    Mizuuchi K; Adzuma K
    Cell; 1991 Jul; 66(1):129-40. PubMed ID: 1649006
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition.
    Mizuuchi M; Baker TA; Mizuuchi K
    Cell; 1992 Jul; 70(2):303-11. PubMed ID: 1322248
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A truncated form of the bacteriophage Mu B protein promotes conservative integration, but not replicative transposition, of Mu DNA.
    Chaconas G; Giddens EB; Miller JL; Gloor G
    Cell; 1985 Jul; 41(3):857-65. PubMed ID: 2988792
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Site-specific HU binding in the Mu transpososome: conversion of a sequence-independent DNA-binding protein into a chemical nuclease.
    Lavoie BD; Chaconas G
    Genes Dev; 1993 Dec; 7(12B):2510-9. PubMed ID: 8276235
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Precise excision of bacteriophage Mu DNA.
    Abbes C; Sezonov G; Joseleau-Petit D; D'Ari R; LiƩbart JC
    Can J Microbiol; 2001 Aug; 47(8):722-6. PubMed ID: 11575498
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quality control in Mu DNA transposition.
    Craigie R
    Cell; 1996 Apr; 85(2):137-40. PubMed ID: 8612265
    [No Abstract]   [Full Text] [Related]  

  • 71. A genetic switch in vitro: DNA inversion by Gin protein of phage Mu.
    Plasterk RH; Kanaar R; van de Putte P
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2689-92. PubMed ID: 6232613
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bacteriophage Mu: a transposing replicon.
    Higgins NP; Manlapaz-Ramos P; Gandhi RT; Olivera BM
    Cell; 1983 Jun; 33(2):623-8. PubMed ID: 6305516
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Muprints and Whole Genome Insertion Scans: Methods for Investigating Chromosome Accessibility and DNA Dynamics using Bacteriophage Mu.
    Patrick Higgins N
    Methods Mol Biol; 2018; 1681():303-314. PubMed ID: 29134604
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mini-Mu transduction: cis-inhibition of the insertion of Mud transposons.
    Reyes O; Beyou A; Mignotte-Vieux C; Richaud F
    Plasmid; 1987 Nov; 18(3):183-92. PubMed ID: 2832860
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In vitro maturation and encapsidation of the DNA of transposable Mu-like phage D108.
    Burns CM; Chan HL; DuBow MS
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6092-6. PubMed ID: 2166943
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components.
    Saariaho AH; Lamberg A; Elo S; Savilahti H
    Virology; 2005 Jan; 331(1):6-19. PubMed ID: 15582649
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Gin-mediated recombination of catenated and knotted DNA substrates: implications for the mechanism of interaction between cis-acting sites.
    Kanaar R; van de Putte P; Cozzarelli NR
    Cell; 1989 Jul; 58(1):147-59. PubMed ID: 2546671
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A domain sharing model for active site assembly within the Mu A tetramer during transposition: the enhancer may specify domain contributions.
    Yang JY; Kim K; Jayaram M; Harshey RM
    EMBO J; 1995 May; 14(10):2374-84. PubMed ID: 7774595
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites.
    Williams TL; Jackson EL; Carritte A; Baker TA
    Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification and characterization of a pre-cleavage synaptic complex that is an early intermediate in Tn10 transposition.
    Sakai J; Chalmers RM; Kleckner N
    EMBO J; 1995 Sep; 14(17):4374-83. PubMed ID: 7556079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.